Cluster of differentiation 24 (CD24) is a surface protein anchored by mucin-like phosphatidylinositol. It is highly expressed in most malignant tumors, promotes tumor occurrence and progression through various mechanisms, and plays an important role in the tumor microenvironment. CD24 has shown promising prospects for anti-tumor therapy in both in vitro and in vivo experiments. This article reviewed the role of CD24 in the tumor microenvironment in the proliferation, invasion and metastasis of malignant tumors, and describes the related therapeutic strategies of CD24-targeting monoclonal antibodies, antibody-drug conjugates, chimeric antigen receptor, and nanoparticle-mediated drug delivery, to provide reference for CD24-targeted therapy.
HomeArticlesVol 34,2024 No.8Detail
Research progress on the role and treatment of CD24 in the tumor microenvironment
Published on Aug. 31, 2024Total Views: 1174 timesTotal Downloads: 414 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Panagiotou E, Syrigos NK, Charpidou A, et al. CD24: a novel target for cancer immunotherapy[J]. J Pers Med, 2022, 12(8): 1235. DOI: 10.3390/jpm12081235.
2.Qiao XJ, Gu Y, Du H, et al. Co-expression of CD24 and Hsp70 as a prognostic biomarker for lun gcancer[J].Neoplasma, 2021, 68(5): 1023-1032. DOI: 10.4149/neo_2021_210118N81.
3.Springer T, Galfrè G, Secher DS, et al. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens[J]. Eur J Immunol, 1978, 8(8): 539-551. DOI: 10.1002/eji.1830080802.
4.Fang X, Zheng P, Tang J, et al. CD24: from A to Z[J]. Cell Mol Immunol, 2010, 7(2): 100-103. DOI: 10.1038/cmi.2009.119.
5.Altevogt P, Sammar M, Hüser L, et al. Novel insights into the function of CD24: a driving force in cancer[J]. Int J Cancer, 2021, 148(3): 546-559. DOI: 10.1002/ijc.33249.
6.Mishra AK, Ye T, Banday S, et al. Targeting the GPI transamidase subunit GPAA1 abrogates the CD24 immune checkpoint in ovarian cancer[J]. Cell Rep, 2024, 43(4): 114041. DOI: 10.1016/j.celrep.2024.114041.
7.Shapira S, Kazanov D, Mdah F, et al. Feasibly of CD24/CD11b as a screening test for hematological malignancies[J]. J Pers Med, 2021, 11(8): 724. DOI: 10.3390/jpm11080724.
8.Barash U, Spyrou A, Liu P, et al. Heparanase promotes glioma progression via enhancing CD24 expression[J]. Int J Cancer, 2019, 145(6): 1596-1608. DOI: 10.1002/ijc.32375.
9.Okabe H, Aoki K, Yogosawa S, et al. Downregulation of CD24 suppresses bone metastasis of lung cancer[J]. Cancer Sci, 2018, 109(1): 112-120. DOI: 10.1111/cas.13435.
10.Zhu X, Yu J, Ai F, et al. CD24 may serve as an immunotherapy target in triple-negative breast cancer by regulating the expression of PD-L1[J]. Breast Cancer (Dove Med Press), 2023, 15: 967-984. DOI: 10.2147/BCTT.S409054.
11.Anderson NR, Minutolo NG, Gill S, et al. Macrophage-based approaches for cancer immunotherapy[J]. Cancer Res, 2021, 81(5): 1201-1208. DOI: 10.1158/0008-5472.CAN-20-2990.
12.Zou KL, Lan Z, Cui H, et al. CD24 blockade promotes anti-tumor immunity in oral squamous cell carcinoma[J]. Oral Dis, 2024, 30(2): 163-171. DOI: 10.1111/odi.14367.
13.Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy[J]. Nature, 2019, 572(7769): 392-396. DOI: 10.1038/s41586-019-1456-0.
14.Chen C, Zhang L, Ruan Z. GATA3 encapsulated by tumor-associated macrophage-derived extracellular vesicles promotes immune escape and chemotherapy resistance of ovarian cancer cells by upregulating the CD24/Siglec-10 axis[J]. Mol Pharm, 2023, 20(2): 971-986. DOI: 10.1021/acs.molpharmaceut.2c00557.
15.Zhou X, Yan Z, Hou J, et al. The Hippo-YAP signaling pathway drives CD24-mediated immune evasion in esophageal squamous cell carcinoma via macrophage phagocytosis[J]. Oncogene, 2024, 43(7): 495-510. DOI: 10.1038/s41388-023-02923-z.
16.Yoshida C, Kadota K, Ibuki E, et al. Siglec10 expression on tumor-associated macrophages is an independent prognostic factor in stage I lung adenocarcinoma[J]. Anticancer Res, 2024, 44(3): 1289-1297. DOI: 10.21873/anticanres.16924.
17.Christian SL. CD24 as a potential therapeutic target in patients with B-cell leukemia and lymphoma: current insights[J]. Onco Targets Ther, 2022, 15: 1391-1402. DOI: 10.2147/OTT.S366625.
18.Mishra AK, Banday S, Bharadwaj R, et al. Macrophages as a potential immunotherapeutic target in solid cancers[J]. Vaccines (Basel), 2022, 11(1): 55. DOI: 10.3390/vaccines11010055.
19.Phan HD, Longjohn MN, Gormley D, et al. CD24 and IgM stimulation of B cells triggers transfer of functional B cell receptor to B cell recipients via extracellular vesicles[J]. J Immunol, 2021, 207(12): 3004-3015. DOI: 10.4049/jimmunol.2100025.
20.Ayre DC, Chute IC, Joy AP, et al. CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo[J]. Sci Rep, 2017, 7(1): 8642. DOI: 10.1038/s41598-017-08094-8.
21.Suzuki T, Kiyokawa N, Taguchi T, et al. CD24 induces apoptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling system[J]. J Immunol, 2001, 166(9): 5567-5577. DOI: 10.4049/jimmunol.166.9.5567.
22.Armstrong CW, Mensah FFK, Leandro MJ, et al. In vitro B cell experiments explore the role of CD24, CD38, and energy metabolism in ME/CFS[J]. Front Immunol, 2024, 14: 1178882. DOI: 10.3389/fimmu.2023.1178882.
23.Murali M, Kumar AR, Nair B, et al. Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance[J]. Clin Transl Oncol, 2022, 24(3): 407-431. DOI: 10.1007/s12094-021-02707-5.
24.Zhang X, Yu C, Liu JQ, et al. Dendritic cell expression of CD24 contributes to optimal priming of T lymphocytes in lymph nodes[J]. Front Immunol, 2023, 14: 1116749. DOI: 10.3389/fimmu.2023.1116749.
25.Shi Y, Zhu J, Liu JQ, et al. CD24 is expressed on FoxP3+ regulatory T cells and regulates their function[J]. Am J Transl Res, 2022, 14(4): 2291-2300. https://pubmed.ncbi.nlm.nih.gov/35559385/
26.Li Y, Zhou J, Zhuo Q, et al. Malignant ascite-derived extracellular vesicles inhibit T cell activity by upregulating Siglec-10 expression[J]. Cancer Manag Res, 2019, 11: 7123-7134. DOI: 10.2147/CMAR.S210568.
27.Yin SS, Gao FH. Molecular mechanism of tumor cell immune escape mediated by CD24/Siglec-10[J]. Front Immunol, 2020, 11: 1324. DOI: 10.3389/fimmu.2020.01324.
28.Han Y, Sun F, Zhang X, et al. CD24 targeting bi-specific antibody that simultaneously stimulates NKG2D enhances the efficacy of cancer immunotherapy[J]. J Cancer Res Clin Oncol, 2019, 145(5): 1179-1190. DOI: 10.1007/s00432-019-02865-8.
29.Zhang P, Lu X, Tao K, et al. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma[J]. J Surg Res, 2015, 194(1): 107-113. DOI: 10.1016/j.jss.2014.09.035.
30.Salnikov AV, Bretz NP, Perne C, et al. Antibody targeting of CD24 efficiently retards growth and influences cytokine milieu in experimental carcinomas[J]. Br J Cancer, 2013, 108(7): 1449-1459. DOI: 10.1038/bjc.2013.102.
31.Li S, Chen D, Guo H, et al. IMM47, a humanized monoclonal antibody that targets CD24, exhibits exceptional anti-tumor efficacy by blocking the CD24/Siglec-10 interaction and can be used as monotherapy or in combination with anti-PD1 antibodies for cancer immunotherapy[J]. Antib Ther, 2023, 6(4): 240-252. DOI: 10.1093/abt/tbad020.
32.Sun F, Wang T, Jiang J, et al. Engineering a high-affinity humanized anti-CD24 antibody to target hepatocellular carcinoma by a novel CDR grafting design[J]. Oncotarget, 2017, 8(31): 51238-51252. DOI: 10.18632/oncotarget.17228.
33.Yang Y, Wu H, Yang Y, et al. Dual blockade of CD47 and CD24 signaling using a novel bispecific antibody fusion protein enhances macrophage immunotherapy[J]. Mol Ther Oncolytics, 2023, 31: 100747. DOI: 10.1016/j.omto.2023.100747.
34.Ma Z, He H, Sun F, et al. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo[J]. J Cancer Res Clin Oncol, 2017, 143(10): 1929-1940. DOI: 10.1007/s00432-017-2436-0.
35.Sun F, Wang Y, Luo X, et al. Anti-CD24 antibody-nitric oxide conjugate selectively and potently suppresses hepatic carcinoma[J]. Cancer Res, 2019, 79(13): 3395-3405. DOI: 10.1158/0008-5472.CAN-18-2839.
36.June CH, O'Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer[J]. Science, 2018, 359(6382): 1361-1365. DOI: 10.1126/science.aar6711.
37.Sun F, Cheng Y, Wanchai V, et al. Bispecific BCMA/CD24 CAR-T cells control multiple myeloma growth[J]. Nat Commun, 2024, 15(1): 615. DOI: 10.1038/s41467-024-44873-4.
38.Yang P, Yu F, Yao Z, et al. CD24 is a novel target of chimeric antigen receptor T cells for the treatment of triple negative breast cancer[J]. Cancer Immunol Immunother, 2023, 72(10): 3191-3202. DOI: 10.1007/s00262-023-03491-7.
39.Klapdor R, Wang S, Morgan M, et al. Characterization of a novel third-generation Anti-CD24-CAR against ovarian cancer[J]. Int J Mol Sci, 2019, 20(3): 660. DOI: 10.3390/ijms20030660.
40.Söhngen C, Thomas DJ, Skowron MA, et al. CD24 targeting with NK-CAR immunotherapy in testis, prostate, renal and (luminal-type) bladder cancer and identification of direct CD24 interaction partners[J]. FEBS J, 2023, 290(20): 4864-4876. DOI: 10.1111/febs.16880.
41.Hou L, Pu L, Chen Y, et al. Targeted intervention of NF2-YAP signaling axis in CD24-overexpressing cells contributes to encouraging therapeutic effects in TNBC[J]. ACS Nano, 2022, 16(4): 5807-5819. DOI: 10.1021/acsnano.1c10921.
42.Zhao M, Li J, Chen F, et al. Engineering nanoparticles boost TNBC therapy by CD24 blockade and mitochondrial dynamics regulation[J]. J Control Release, 2023, 355: 211-227. DOI: 10.1016/j.jconrel.2023.01.075.
43.Wang K, Yu A, Liu K, et al. Nano-LYTACs for degradation of membrane proteins and inhibition of CD24/Siglec-10 signaling pathway[J]. Adv Sci (Weinh), 2023, 10(13): e2300288. DOI: 10.1002/advs.202300288.
44.Bharali DJ, Sudha T, Cui H, et al. Anti-CD24 nano-targeted delivery of docetaxel for the treatment of prostate cancer[J]. Nanomedicine, 2017, 13(1): 263-273. DOI: 10.1016/j.nano.2016.08.017.
45.田雪琪, 焦丽静, 毕凌, 等. 基于外周血生物标志物的非小细胞肺癌预后预测模型的系统评价[J].中国循证医学杂志, 2023, 23(12): 1407-1412. [Tian XQ, Jiao LJ, Bi L, et al. Prognostic prediction models based on peripheral biomarkers for non-small cell lung cancer:a systematic review[J].Chinese Journal of Evidence-Based Medicine, 2023, 23(12): 1407-1412.] DOI: 10.7507/1672-2531.202306071.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20242580
-
Development situation and expert suggestion on "Internet+Traditional Chinese Medicine" in China
Jun. 01, 20242268
-
Analysis of the relationship between home skin care associated factors and disease severity for children with atopic dermatitis
Jun. 01, 20242008
-
Mechanism of ALKBH5 mediated m6A regulation of Galectin-9 in the invasion, migration, and proliferation of endometrial stromal cell
Jun. 01, 20241831
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20241735
-
Analysis of the disease burden of benign prostatic hyperplasia in China, the United States and Germany at 1990 and 2019
Jun. 01, 20241596
-
Risk factors and prediction model construction for poor outcome in asthma combined with severe community-acquired pneumonia in children
Jun. 01, 20241541
-
Relationship and potential mechanisms between gut microbiota and benign prostatic hyperplasia
Jun. 01, 20241417