1.Campion NJ, Ally M, Jank BJ, et al. The molecular march of primary and recurrent nasopharyngeal carcinoma[J]. Oncogene, 2021, 40(10): 1757-1774. DOI: 10.1038/s41388-020-01631-2.
2.Fierti AO, Yakass MB, Okertchiri EA, et al. The role of epstein-barr virus in modulating key tumor suppressor genes in associated malignancies: epigenetics, transcriptional, and post-translational modifications[J]. Biomolecules, 2022, 12(1): 127. DOI: 10.3390/biom12010127.
3.Yang SP, Rao MY, Chen QS, et al. Causes of death in long-term nasopharyngeal carcinoma survivors[J]. Front Public Health, 2022, 10: 912843. DOI: 10.3389/fpubh.2022.912843.
4.Tang LL, Chen YP, Chen CB, et al. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma[J]. Cancer Commun (Lond), 2021, 41(11): 1195-1227. DOI: 10.1002/cac2.12218.
5.朱文鹏, 韩梦琦, 王雨欣, 等. 1990—2019年中国鼻咽癌发病与死亡的趋势及预测研究[J]. 中国全科医学, 2023, 26(34): 4269-4276. [Zhu WP, Han MQ, Wang YX, et al. Trends and prediction of nasopharyngeal carcinoma incidence and mortality in China from 1990 to 2019[J]. Chinese General Practice, 2023, 26(34): 4269-4276.] DOI: 10.12114/j.issn.1007-9572.2023.0247.
6.Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
7.Chen X, Giles J, Yao Y, et al. The path to healthy ageing in China: a peking university-lancet commission[J]. Lancet, 2022, 400(10367): 1967-2006. DOI: 10.1016/S0140-6736(22)01546-X.
8.梁冠盈, 苗大壮, 范宁宁, 等. 1990-2019年中国鼻咽癌发病和死亡年龄-时期-队列分析及预测[J]. 中华肿瘤防治杂志, 2024, 31(7): 391-398. [Liang GY, Miao DZ, Fan NN, et al. Age-period-cohort analysis and prediction of nasopharyngeal carcinoma incidence and mortality in China from 1990 to 2019[J]. Chinese Journal of Cancer Prevention and Treatment, 2024, 31(7): 391-398.] DOI: 10.16073/j.cnki.cjcpt.2024.07.01.
9.谢梦娇. 中国鼻咽癌发病和死亡的趋势分析及预测研究 [D]. 辽宁: 中国医科大学, 2023. [Xie MJ. Trend analysis and prediction of nasopharyngeal carcinoma incidence and mortality in China[D]. Liaoning: China Medical University, 2023.] DOI: 10.27652/d.cnki.gzyku.2023.000883.
10.邓芷晴, 周利华, 叶久红, 等. ARIMA模型在肺癌发病率预测中的应用[J]. 医学新知杂志, 2019, 29(4): 414-417. [Deng ZQ, Zhou LH, Ye JH, et al. Application of ARIMA model in forecast of the incidence of lung cancer[J]. Journal of New Medicine, 2019, 29(4): 414-417.] DOI: 10.3969/j.issn.1004-5511.2019.04.020.
11.文静, 殷成宇, 廖国伟, 等. 应用GM(1,1)灰色模型预测全国甲状腺癌发病趋势[J]. 现代肿瘤医学, 2022, 30(5): 899-902. [Wen J, Yin CY, Liao GW, et al. Application of GM(1,1) grey model in predicting the incidence trend of thyroid cancer in China[J]. Journal of Modern Oncology, 2022, 30(5): 899-902.] DOI: 10.3969/j.issn.1672-4992.2022.05.030.
12.Wang X, Cheng F, Fu Q, et al. Time trends in maternal hypertensive disorder incidence in Brazil, Russian Federation, India, China, and South Africa (BRICS): an age-period-cohort analysis for the GBD 2021[J]. BMC Pregnancy Childbirth, 2024, 24(1): 731. DOI: 10.1186/s12884-024-06931-z.
13.Tu C, Pan Q, Jiang C, et al. Trends and predictions in the physical shape of Chinese preschool children from 2000 to 2020[J]. Front Public Health, 2023, 11: 1148415. DOI: 10.3389/fpubh.2023.1148415.
14.鲍晓露, 向国春, 史卢少博, 等. 基于灰色GM(1,1)-SVM组合模型的广东省卫生总费用预测研究[J]. 现代预防医学, 2022, 49(5): 856-859. [Bao XL, Xiang GC, Shi LSB, et al. Prediction of total health expenditure in Guangdong based on GM(1,1)-SVM combination model[J]. Modern Preventive Medicine, 2022, 49(5): 856-859.] https://d.wanfangdata.com.cn/periodical/xdyfyx202205018
15.Yan J, Li Y, Zhou P. Impact of COVID-19 pandemic on the epidemiology of STDs in China: based on the GM (1,1) model[J]. BMC Infect Dis, 2022, 22(1): 519. DOI: 10.1186/s12879-022-07496-y.
16.Gao J, Li J, Wang M. Time series analysis of cumulative incidences of typhoid and paratyphoid fevers in China using both Grey and SARIMA models[J]. PLoS One, 2020, 15(10): e241217. DOI: 10.1371/journal.pone.0241217.
17.程龙慧, 任琼琼, 肖培, 等. 我国常见细菌耐药趋势预测研究: 基于灰色GM(1,1)模型[J]. 中国感染控制杂志, 2022, 21(12): 1164-1170. [Cheng LH, Ren QQ, Xiao P, et al. Prediction of drug resistance trends of common bacteria in China based on grey prediction model GM(l,1)[J]. Chinese Journal of Infection Control, 2022, 21(12): 1164-1170.] DOI: 10.12138/j.issn.1671-9638.20223282.
18.张彬, 张龙秀, 王瑞, 等. 基于GM(1,1)和ARIMA模型的安徽省孕产妇及儿童死亡率的预测研究[J]. 中国妇幼卫生杂志, 2023, 14(1): 1-6. [Zhang B, Zhang LX, Wang R, et al. Prediction of maternal and child mortality in Anhui Province based on GM(1,1) and ARIMA combination model [J]. Chinese Journal of Women and Children Health, 2023, 14(1): 1-6.] DOI: 10.19757/j.cnki.issn1674-7763.2023.01.001.
19.俞玉琪, 李德富, 刘勇, 等. 江西省儿童流感样病例就诊率ARIMA模型的建立及应用[J]. 南昌大学学报(医学版), 2023, 63(1): 73-76. [Yu YQ, Li DF, Liu Y, et al. Establishment and application of ARIMA model for influenza-like illness consultation rate among children in Jiangxi Province[J]. Journal of Nanchang University (Medical Sciences), 2023, 63(1): 73-76.] DOI: 10.13764/j.cnki.ncdm.2023.01.014.
20.尤金辉, 范国锋. ARIMA模型与GM(1,1)模型对兴化市结核病发病数预测效果比较[J]. 江苏预防医学, 2022, 33(5): 551-553. [You JH, Fan GF. Comparative study of ARIMA and GM(1,1) models in predicting the incidence of tuberculosis in Xinghua City[J]. Jiangsu Journal of Preventive Medicine, 2022, 33(5): 551-553.] DOI: 10.13668/j.issn.1006-9070.2022.05.016.
21.Hassan NMA, 韦彗琳, 胡艳玲. 1990—2019年中国鼻咽癌疾病负担变化趋势分析及预测[J]. 蛇志, 2023, 35(2): 191-197. [Hassan NMA, Wei HL, Hu YL. Trend analysis and prediction of nasopharyngeal carcinoma disease burden in China from 1990 to 2019[J]. Journal of Snake, 2023, 35(2): 191-197.] DOI: 10.3969/j.issn.1001-5639.2023.02.012.
22.Zhang R, He Y, Wei B, et al. Nasopharyngeal carcinoma burden and its attributable risk factors in China: estimates and forecasts from 1990 to 2050[J]. Int J Environ Res Public Health, 2023, 20(4): 2926. DOI: 10.3390/ijerph20042926.
23.Yu MC, Nichols PW, Zou XN, et al. Induction of malignant nasal cavity tumours in Wistar rats fed Chinese salted fish[J]. Br J Cancer, 1989, 60(2): 198-201. DOI: 10.1038/bjc.1989.250.
24.Da CV, Marques-Silva AC, Moreli ML. The Epstein-Barr virus latent membrane protein-1 (LMP1) 30-bp deletion and XhoI-polymorphism in nasopharyngeal carcinoma: a Meta-analysis of observational studies[J]. Syst Rev, 2015, 4: 46. DOI: 10.1186/s13643-015-0037-z.
25.Jin N, Li J, Jin M, et al. Spatiotemporal variation and determinants of population's PM(2.5) exposure risk in China, 1998-2017: a case study of the Beijing-Tianjin-Hebei region[J]. Environ Sci Pollut Res Int, 2020, 27(25): 31767-31777. DOI: 10.1007/s11356-020-09484-8.
26.Chen Y, Chang ET, Liu Q, et al. Occupational exposures and risk of nasopharyngeal carcinoma in a high-risk area: a population-based case-control study[J]. Cancer, 2021, 127(15): 2724-2735. DOI: 10.1002/cncr.33536.
27.Lin JH, Jiang CQ, Ho SY, et al. Smoking and nasopharyngeal carcinoma mortality: a cohort study of 101,823 adults in Guangzhou, China[J]. BMC Cancer, 2015, 15: 906. DOI: 10.1186/s12885-015-1902-9.
28.Zhang Y, Cao Y, Luo L, et al. The global, regional, and national burden of nasopharyngeal carcinoma and its attributable risk factors in 204 countries and territories, 1990-2019[J]. Acta Otolaryngol, 2022, 142(7-8): 590-609. DOI: 10.1080/00016489.2022.2111711.
29.王明君. 灰色系统理论GM(1,1)模型在青海省碘盐监测中的应用初探[J]. 医学信息, 2023, 36(2): 24-27. [Wang MJ. Preliminary application of grey system theory GM(1,1) model in iodine salt monitoring in Qinghai Province[J]. Journal of Medical Information, 2023, 36(2): 24-27.] DOI: 10.3969/j.issn.1006-1959.2023.02.004.
30.Wang YW, Shen ZZ, Jiang Y. Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China[J]. PLoS One, 2018, 9(13): e201987. DOI: 10.1371/journal.pone.0201987.
31.侯晓澈. 利用灰色GM(1,1)模型预测某三甲医院消化内科住院患者医院感染发生率[J]. 中国消毒学杂志, 2020, 37(3): 207-209. [Hou XC. Prediction of hospital infection incidence rate among gastroenterology inpatients in a tertiary hospital using GM(1,1) grey model[J]. Chinese Journal of Disinfection, 2020, 37(3): 207-209.] DOI: 10.11726/j.issn.1001- 7658.2020.03.017.
32.石雷. 辽阳市肺结核病流行趋势的灰色模型分析[J]. 中国热带医学, 2010, 10(4): 429-430. [Shi L. Grey model analysis of tuberculosis epidemic trend in Liaoyang City[J]. Chinese Journal of Tropical Medicine, 2010, 10(4): 429-430.] https://d.wanfangdata.com.cn/periodical/ChVQZXJpb2RpY2FsQ0hJMjAyNTA2MjISD3pncmR5eDIwMTAwNDAxOBoIaXRtdnBvaGI%3D
33.宋媛媛, 王雷, 熊甜, 等. ARIMA模型与GM(1,1)模型在痢疾发病数预测中的比较研究[J]. 实用预防医学, 2019, 26(7): 888-892. [Song YY, Wang L, Xiong T, et al. Comparative study of ARIMA and GM(1,1) models in predicting the incidence of dysentery[J]. Practical Preventive Medicine, 2019, 26(7): 888-892.] DOI: 10.3969/j.issn.1006-3110.2019.07.034.