Neutrophil extracellular traps (NETs) are extracellular fibrous network structures released by activated neutrophils, mainly composed of DNA, histones, and antimicrobial proteins. The process of neutrophil releasing NETs is called neutrophil extracellular traps-osis (NETosis), including suicidal NETosis, energetic NETosis, and mitochondrial-associated NETosis. NETs play a dual role in tumor progression: on the one hand, they can promote tumor progression by reshaping the tumor microenvironment, enhancing tumor cell proliferation, metastasis, and drug resistance. On the other hand, under specific conditions, NETs can also exert anti-tumor effects. Research has shown that the distribution of NETs is closely related to the malignancy of tumors and may serve as prognostic markers. In addition, treatment strategies targeting NETs, such as inhibiting their formation or promoting their degradation, are emerging as new research directions. This article reviews the formation mechanism of NETs, their distribution characteristics in tumors, their impact on tumor progression and prognosis, as well as related treatment strategies, providing new perspectives and potential targets for tumor treatment.
HomeArticlesVol 35,2025 No.9Detail
Research progress on neutrophil extracellular traps in tumors
Published on Sep. 26, 2025Total Views: 32 timesTotal Downloads: 10 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Ye R, Zhu Z, Gu T, et al. Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant[J]. Nat Commun, 2024, 15(1): 5557. DOI: 10.1038/s41467-024-49933-3.
2.Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303(5663): 1532-1535. DOI: 10.1126/science.1092385.
3.Baratchi S, Danish H, Chheang C, et al. Piezo1 expression in neutrophils regulates shear-induced NETosis[J]. Nat Commun, 2024, 15(1): 7023. DOI: 10.1038/s41467-024-51211-1.
4.Hasheminasab SS, Conejeros I, D Velásquez Z, et al. ATP purinergic receptor P2X1-dependent suicidal NETosis induced by Cryptosporidium parvum under physioxia conditions[J]. Biology (Basel), 2022, 11(3): 442. DOI: 10.3390/biology11030442.
5.Von Köckritz-Blickwede M, Winstel V. Molecular prerequisites for neutrophil extracellular trap formation and evasion mechanisms of staphylococcus aureus[J]. Front Immunol, 2022, 13: 836278. DOI: 10.3389/fimmu.2022.836278.
6.Badilla-Vargas L, Pereira R, Molina-Mora JA, et al. Clostridium perfringens phospholipase C, an archetypal bacterial virulence factor, induces the formation of extracellular traps by human neutrophils[J]. Front Cell Infect Microbiol, 2023, 13: 1278718. DOI: 10.3389/fcimb.2023.1278718.
7.Guy A, Garcia G, Gourdou-Latyszenok V, et al. Platelets and neutrophils cooperate to induce increased neutrophil extracellular trap formation in JAK2V617F myeloproliferative neoplasms[J]. J Thromb Haemost, 2024, 22(1): 172-187. DOI: 10.1016/j.jtha.2023.08.028.
8.Vorobjeva N, Dagil Y, Pashenkov M, et al. Protein kinase C isoforms mediate the formation of neutrophil extracellular traps[J]. Int Immunopharmacol, 2023, 114: 109448. DOI: 10.1016/j.intimp.2022.109448.
9.Maqsood M, Suntharalingham S, Khan M, et al. Complement-mediated two-step NETosis: serum-induced complement activation and calciuminflux generate NADPH oxidase-dependent NETs in serum-free conditions[J]. Int J Mol Sci, 2024, 25(17): 9625. DOI: 10.3390/ijms25179625.
10.Luo D, Lu Y, Zhang J, et al. The mechanism of acrolein exposure inhibited the release of neutrophil extracellular traps: by reducing respiratory burst and Raf/MEK/ERK pathway and promote cell apoptosis[J]. Chem Biol Interact, 2023, 385: 110744. DOI: 10.1016/j.cbi.2023.110744.
11.Guo W, Gong Q, Zong X, et al. GPR109A controls neutrophil extracellular traps formation and improve early sepsis by regulating ROS/PAD4/Cit-H3 signal axis[J]. Exp Hematol Oncol, 2023, 12(1): 15. DOI: 10.1186/s40164-023-00376-4.
12.Zhu YP, Speir M, Tan Z, et al. NET formation is a default epigenetic program controlled by PAD4 in apoptotic neutrophils[J]. Sci Adv, 2023, 9(51): eadj1397. DOI: 10.1126/sciadv.adj1397.
13.Van Damme KFA, Hertens P, Martens A, et al. Protein citrullination and NET formation do not contribute to the pathology of A20/TNFAIP3 mutant mice[J]. Sci Rep, 2023, 13(1): 17992. DOI: 10.1038/s41598-023-45324-8.
14.Guillotin F, Fortier M, Portes M, et al. Vital NETosis vs. suicidal NETosis during normal pregnancy and preeclampsia[J]. Front Cell Dev Biol, 2022, 10: 1099038. DOI: 10.3389/fcell.2022.1099038.
15.Zhang L, Gao H, Yang L, et al. FTY720 induces neutrophil extracellular traps via a NADPH oxidase-independent pathway[J]. Arch Biochem Biophys, 2021, 711: 109015. DOI: 10.1016/j.abb.2021.109015.
16.Wu SY, Weng CL, Jheng MJ, et al. Candida albicans triggers NADPH oxidase-independent neutrophil extracellular traps through dectin-2[J]. PLoS Pathog, 2019, 15(11): e1008096. DOI: 10.1371/journal.ppat.1008096.
17.Reithofer M, Karacs J, Strobl J, et al. Alum triggers infiltration of human neutrophils ex vivo and causes lysosomal destabilization and mitochondrial membrane potential-dependent NET-formation[J]. FASEB J, 2020, 34(10): 14024-14041. DOI: 10.1096/fj.202001413R.
18.Tackenberg H, Möller S, Filippi MD, et al. The small GTPase Cdc42 negatively regulates the formation of neutrophil extracellular traps by engaging mitochondria[J]. Front Immunol, 2021, 12: 564720. DOI: 10.3389/fimmu.2021.564720.
19.Burgener SS, Schroder K. Neutrophil extracellular traps in host defense[J]. Cold Spring Harb Perspect Biol, 2020, 12(7): 15. DOI: 10.1101/cshperspect.a037028.
20.Zhao C, Liang F, Ye M, et al. GSDMD promotes neutrophil extracellular traps via mtDNA-cGAS-STING pathway during lung ischemia/reperfusion[J]. Cell Death Discov, 2023, 9(1): 368. DOI: 10.1038/s41420-023-01663-z.
21.Yang C, Wang Z, Li L, et al. Aged neutrophils form mitochondria-dependent vital NETs to promote breast cancer lung metastasis[J]. J Immunother Cancer, 2021, 9(10): e002875. DOI: 10.1136/jitc-2021-002875.
22.Azzouz D, Khan MA, Sweezey N, et al. Two-in-one: UV radiation simultaneously induces apoptosis and NETosis[J]. Cell Death Discov, 2018, 4: 13. DOI: 10.1038/s41420-018-0048-3.
23.Arzumanyan G, Mamatkulov K, Arynbek Y, et al. Radiation from UV-A to red light induces ROS-dependent release of neutrophil extracellular traps[J]. Int J Mol Sci, 2023, 24(6): 5770. DOI: 10.3390/ijms24065770.
24.Inaba I, Hiramoto K, Yamate Y, et al. Inhibiting neutrophil extracellular traps protects against ultraviolet b-induced skin damage: effects of hochu-ekki-to and DNase I[J]. Int J Mol Sci, 2024, 25(3): 1723. DOI: 10.3390/ijms25031723.
25.Taifour T, Attalla SS, Zuo D, et al. The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer[J]. Immunity, 2023, 56(12): 2755-2772. e8. DOI: 10.1016/j.immuni.2023.11.002.
26.Yin Y, Dai H, Sun X, et al. HRG inhibits liver cancer lung metastasis by suppressing neutrophil extracellular trap formation[J]. Clin Transl Med, 2023, 13(6): e1283. DOI: 10.1002/ctm2.1283.
27.Herranz R, Oto J, Hueso M, et al. Bladder cancer patients have increased NETosis and impaired DNaseI-mediated NET degradation that can be therapeutically restored in vitro[J]. Front Immunol, 2023, 14: 1171065. DOI: 10.3389/fimmu.2023.1171065.
28.Kajioka H, Kagawa S, Ito A, et al. Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis[J]. Cancer Lett, 2021, 497: 1-13. DOI: 10.1016/j.canlet.2020.10.015.
29.Schedel F, Mayer-Hain S, Pappelbaum KI, et al. Evidence and impact of neutrophil extracellular traps in malignant melanoma[J]. Pigment Cell Melanoma Res, 2020, 33(1): 63-73. DOI: 10.1111/pcmr.12818.
30.Yu Y, Zhang C, Dong B, et al. Neutrophil extracellular traps promote immune escape in hepatocellular carcinoma by up-regulating CD73 through Notch2[J]. Cancer Lett, 2024, 598: 217098. DOI: 10.1016/j.canlet.2024.217098.
31.Kong X, Zhang Y, Xiang L, et al. Fusobacterium nucleatum-triggered neutrophil extracellular traps facilitate colorectal carcinoma progression[J]. J Exp Clin Cancer Res, 2023, 42(1): 236. DOI: 10.1186/s13046-023-02817-8.
32.Yang S, Sun B, Li J, et al. Neutrophil extracellular traps promote angiogenesis in gastric cancer[J]. Cell Commun Signal, 2023, 21(1): 176. DOI: 10.1186/s12964-023-01196-z.
33.Shen P, Cheng P, Li Y, et al. Unveiling the covert interaction between gut microbiota and neutrophils to drive colorectal cancer metastasis[J]. Eur J Pharmacol, 2024, 962: 176217. DOI: 10.1016/j.ejphar.2023.176217.
34.Stehr AM, Wang G, Demmler R, et al. Neutrophil extracellular traps drive epithelial-mesenchymal transition of human colon cancer[J]. J Pathol, 2022, 256(4): 455-467. DOI: 10.1002/path.5860.
35.Xiong G, Chen Z, Liu Q, et al. CD276 regulates the immune escape of esophageal squamous cell carcinoma through CXCL1-CXCR2 induced NETs[J]. J Immunother Cancer, 2024, 12(5): e008662. DOI: 10.1136/jitc-2023-008662.
36.He XY, Gao Y, Ng D, et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment[J]. Cancer Cell, 2024, 42(3): 474-486. e12. DOI: 10.1016/j.ccell.2024.01.013.
37.Petővári G, Tóth G, Turiák L, et al. Dynamic interplay in tumor ecosystems: communication between hepatoma cells and fibroblasts[J]. Int J Mol Sci, 2023, 24(18): 13996. DOI: 10.3390/ijms241813996.
38.Xia Q, Du Z, Chen M, et al. A protein complex of LCN2, LOXL2 and MMP9 facilitates tumour metastasis in oesophageal cancer[J]. Mol Oncol, 2023, 17(11): 2451-2471. DOI: 10.1002/1878-0261.13529.
39.Mccarty JH. MMP9 clears the way for metastatic cell penetration across the blood-brain barrier[J]. Cancer Res, 2023, 83(8): 1167-1169. DOI: 10.1158/0008-5472.Can-23-0151.
40.Li C, Chen T, Liu J, et al. FGF19-induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer[J]. Adv Sci (Weinh), 2023, 10(24): e2302613. DOI: 10.1002/advs.202302613.
41.Jiang ZZ, Peng ZP, Liu XC, et al. Neutrophil extracellular traps induce tumor metastasis through dual effects on cancer and endothelial cells[J]. Oncoimmunology, 2022, 11(1): 2052418. DOI: 10.1080/2162402x.2022.2052418.
42.Yan M, Gu Y, Sun H, et al. Neutrophil extracellular traps in tumor progression and immunotherapy[J]. Front Immunol, 2023, 14: 1135086. DOI: 10.3389/fimmu.2023.1135086.
43.Wang Y, Liu F, Chen L, et al. Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing IncRNA MIR503HG toactivate the NF-κB/NLRP3 inflammasome pathway[J]. Front Immunol, 2022, 13: 867516. DOI: 10.3389/fimmu.2022.867516.
44.Fan A, Gao M, Tang X, et al. HMGB1/RAGE axis in tumor development: unraveling its significance[J]. Front Oncol, 2024, 14: 1336191. DOI: 10.3389/fonc.2024.1336191.
45.Li Y, Wu S, Zhao Y, et al. Neutrophil extracellular traps induced by chemotherapy inhibit tumor growth in murine models of colorectal cancer[J]. J Clin Invest, 2024, 134(5): e175031. DOI: 10.1172/jci175031.
46.Ali M, Fulci G, Grigalavicius M, et al. Myeloperoxidase exerts anti-tumor activity in glioma after radiotherapy[J]. Neoplasia, 2022, 26: 100779. DOI: 10.1016/j.neo.2022.100779.
47.Lee HT, Lin CS, Liu CY, et al. Mitochondrial plasticity and glucose metabolic alterations in human cancer under oxidative stress-from viewpoints of chronic inflammation and neutrophil extracellular traps (NETs)[J]. Int J Mol Sci, 2024, 25(17): 9458. DOI: 10.3390/ijms25179458.
48.Li J, Xia Y, Sun B, et al. Neutrophil extracellular traps induced by the hypoxic microenvironment in gastric cancer augment tumour growth[J]. Cell Commun Signal, 2023, 21(1): 86. DOI: 10.1186/s12964-023-01112-5.
49.Zhai R, Gong Z, Wang M, et al. Neutrophil extracellular traps promote invasion and metastasis via NLRP3-mediated oral squamous cell carcinoma pyroptosis inhibition[J]. Cell Death Discov, 2024, 10(1): 214. DOI: 10.1038/s41420-024-01982-9.
50.Sun Y, He J, Chen W, et al. Inhalable DNase I@Au hybrid nanoparticles for radiation sensitization and metastasis inhibition by elimination of neutrophil extracellular traps[J]. Biomaterials, 2025, 317: 123095. DOI: 10.1016/j.biomaterials.2025.123095.
51.Chen Y, Hu H, Tan S, et al. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy[J]. Exp Hematol Oncol, 2022, 11(1): 99. DOI: 10.1186/s40164-022-00345-3.
52.Zhu W, Yang S, Meng D, et al. Targeting NADPH oxidase and integrin α5β1 to inhibit neutrophil extracellular traps-mediated metastasis in colorectal cancer[J]. Int J Mol Sci, 2023, 24(21): 16001. DOI: 10.3390/ijms242116001.
53.Kaltenmeier C, Yazdani HO, Morder K, et al. Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment[J]. Front Immunol, 2021, 12: 785222. DOI: 10.3389/fimmu.2021.785222.
54.Yang L, Liu Q, Zhang X, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25[J]. Nature, 2020, 583(7814): 133-138. DOI: 10.1038/s41586-020-2394-6.
55.Lee W, Ko SY, Akasaka H, et al. Neutrophil extracellular traps promote pre-metastatic niche formation in the omentum by expanding innate-like B cells that express IL-10[J]. Cancer Cell, 2025, 43(1): 69-85. e11. DOI: 10.1016/j.ccell.2024.12.004.
56.Zhang C, Wu D, Dong B, et al. The scaffold of neutrophil extracellular traps promotes CCA progression and modulates angiogenesis via ITGAV/NFκB[J]. Cell Commun Signal, 2024, 22(1): 103. DOI: 10.1186/s12964-024-01500-5.
57.Zeng J, Wang Y, Zhu M, et al. Neutrophil extracellular traps boost laser-induced mouse choroidal neovascularization through the activation of the choroidal endothelial cell TLR4/HIF-1α pathway[J]. FEBS J, 2023, 290(22): 5395-5410. DOI: 10.1111/febs.16928.
58.Yang S, Zou X, Li J, et al. Immunoregulation and clinical significance of neutrophils/NETs-ANGPT2 in tumor microenvironment of gastric cancer[J]. Front Immunol, 2022, 13: 1010434. DOI: 10.3389/fimmu.2022.1010434.
59.Lu K, Xia Y, Cheng P, et al. Synergistic potentiation of the anti-metastatic effect of a ginseng-salvia miltiorrhiza herbal pair and its biological ingredients via the suppression of CD62E-dependent neutrophil infiltration and NETformation[J]. J Adv Res, 2024, 30: S2090-1232(24)00490-9. DOI: 10.1016/j.jare.2024.10.036.
60.Berger-Achituv S, Brinkmann V, Abu Abed U, et al. A proposed role for neutrophil extracellular traps in cancer immunoediting[J]. Front Immunol, 2013, 4: 48. DOI: 10.3389/fimmu.2013.00048.
61.Zhang F, Yan Y, Cao X, et al. TGF-β-driven LIF expression influences neutrophil extracellular traps (NETs) and contributes to peritoneal metastasis in gastric cancer[J]. Cell Death Dis, 2024, 15(3): 218. DOI: 10.1038/s41419-024-06594-w.
62.Jin Y, Liao L, Chen Q, et al. Multi-omics analysis reveals that neutrophil extracellular traps related gene TIMP1 promotes CRC progression and influences ferroptosis[J]. Cancer Cell Int, 2025, 25(1): 31. DOI: 10.1186/s12935-025-03643-y.
63.Millrud CR, Kågedal Å, Georén SK, et al. NET-producing CD16high CD62Ldim neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC[J]. Int J Cancer, 2017, 140(11): 2557-2567. DOI: 10.1002/ijc.30671.
64.Guo Y, Li Y, Li J, et al. Controlled inflammation drives neutrophil-mediated precision drug delivery in heterogeneous tumors[J]. Adv Sci (Weinh), 2025, 12(11): e2411307. DOI: 10.1002/advs.202411307.
65.Schedel F, Mayer-Hain S, Pappelbaum KI, et al. Evidence and impact of neutrophil extracellular traps in malignant melanoma[J]. Pigment Cell Melanoma Res, 2020, 33(1): 63-73. DOI: 10.1111/pcmr.12818.
66.Lee YY, Park HH, Park W, et al. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm[J]. Biomaterials, 2021, 267: 120389. DOI: 10.1016/j.biomaterials.2020.120389.
67.Wang CY, Lin TT, Hu L, et al. Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy[J]. EBioMedicine, 2023, 90: 104499. DOI: 10.1016/j.ebiom.2023.104499.
68.Liu LN, Chen C, Xin WJ, et al. The oncolytic bacteria-mediated delivery system of CCDC25 nucleic acid drug inhibits neutrophil extracellular traps induced tumor metastasis[J]. J Nanobiotechnology, 2024, 22(1): 69. DOI: 10.1186/s12951-024-02335-5.
69.Shinde-Jadhav S, Mansure JJ, Rayes RF, et al. Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer[J]. Nat Commun, 2021, 12(1): 2776. DOI: 10.1038/s41467-021-23086-z.
70.Tamura K, Miyato H, Kanamaru R, et al. Neutrophil extracellular traps (NETs) reduce the diffusion of doxorubicin which may attenuate its ability to induce apoptosis of ovarian cancer cells[J]. Heliyon, 2022, 8(6): e09730. DOI: 10.1016/j.heliyon.2022.e09730.
71.Mousset A, Albrengues J. NETs unleashed: neutrophil extracellular traps boost chemotherapy against colorectal cancer[J]. J Clin Invest, 2024, 134(5): e178344. DOI: 10.1172/jci178344.
Popular Papers
-
Analysis of the effect of dietary factors on irritable bowel syndrome by Mendelian randomized method
Apr. 25, 20255412
-
Constructing a predictive model for mild cognitive impairment in elderly individuals with coexisting multiple diseases based on machine learning algorithms
Apr. 25, 20253564
-
Clinical progress of cadonilimab in the treatment of malignant tumor
Jun. 25, 20253400
-
Development and future prospect of project-based learning in medical education from interdisciplinary perspective: taking the teaching practice of Sichuan University as an example
Apr. 25, 20253194
-
Mediating effects of social support and health literacy on self-efficacy and self-advocacy in patients with postoperative chemotherapy for breast cancer
Aug. 25, 20253053
-
Barriers and facilitators to the implementation of integrated community multimorbidity care model in Shanghai-a qualitative study based on normative process theory
Jun. 25, 20252949
-
Research progress on mechanisms of endocrine therapy resistance in prostate cancer
Apr. 25, 20252919
-
The regulatory mechanism of deferoxamine spray in promoting the healing of chronic wounds in third-degree burns
Apr. 25, 20252857