Welcome to visit Zhongnan Medical Journal Press Series journal website!

The research progress of fibroblast growth factor 21 in retinal neovascularization diseases

Published on Feb. 02, 2026Total Views: 23 timesTotal Downloads: 7 timesDownloadMobile

Author: SHI Ruobing 1 ZHU Fangyuan 1 LIU Hang 2 XIAO Xuan 1, 2 YANG Anhuai 1

Affiliation: 1. Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China 2. Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China

Keywords: Fibroblast growth factor 21 Retinal neovascularization Diabetic retinopathy Retinopathy of prematurity Age-related macular degeneration Retinal vein obstruction

DOI: 10.12173/j.issn.1004-5511.202504168

Reference: Shi RB, Zhu FY, Liu H, et al. The research progress of fibroblast growth factor 21 in retinal neovascularization diseases[J]. Yixue Xinzhi Zazhi, 2026, 36(1): 97-102. DOI: 10.12173/j.issn.1004-5511.202504168. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Retinal neovascularization (RNV) diseases are one of the leading causes of visual impairment and blindness, including diabetic retinopathy, retinopathy of prematurity, retinal vein obstruction, and wet age-related macular degeneration. In recent years, fibroblast growth factor 21 (FGF21), a multifunctional metabolic regulator, has been found to exert a significant inhibitory effect on RNV. Therefore, this article systematically reviews the biological characteristics of FGF21, its molecular regulatory mechanisms in RNV diseases, and its potential therapeutic applications, aiming to provide a theoretical basis for developing novel FGF21-based treatment strategies for retinal diseases.

Full-text
Please download the PDF version to read the full text: download
References

1.Zhou Y, Xu M, Shen W, et al. Recent advances in nanomedicine for ocular fundus neovascularization disease management[J]. Adv Healthc Mater, 2024, 13(17): e2304626.

2.Selvam S, Kumar T, Fruttiger M. Retinal vasculature development in health and disease[J]. Prog Retin Eye Res, 2018, 63: 1-19.

3.Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis[J]. J Cell Biochem, 2022, 123(12): 1938-1965.

4.Biswas N, Mori T, Ragava Chetty Nagaraj NK, et al. Adenosine diphosphate stimulates VEGF-independent choroidal endothelial cell proliferation: a potential escape from anti-VEGF therapy[J]. Proc Natl Acad Sci U S A, 2025, 122(4): e2418752122.

5.Romero-Aroca P, Baget-Bernaldiz M, Pareja-Rios A, et al. Diabetic macular edema pathophysiology: vasogenic versus inflammatory[J]. J Diabetes Res, 2016, 2016: 2156273.

6.Martin DF, Maguire MG, Fine SL, et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results[J]. Ophthalmology, 2020, 127(4s): S135-s145.

7.Hara C, Wakabayashi T, Fukushima Y, et al. Tachyphylaxis during treatment of exudative age-related macular degeneration with aflibercept[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(11): 2559-2569.

8.ElSheikh RH, Chauhan MZ, Sallam AB. Current and novel therapeutic approaches for treatment of neovascular age-related macular degeneration[J]. Biomolecules, 2022, 12(11): 1629.

9.Avery RL, Gordon GM. Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and Meta-analysis[J]. JAMA Ophthalmol, 2016, 134(1): 21-29.

10.Yin G, Zhao L. Risk of hypertension with anti-VEGF monoclonal antibodies in cancer patients: a systematic review and Meta-analysis of 105 phase II/III randomized controlled trials[J]. J Chemother, 2022, 34(4): 221-234.

11.Fang YC, Lai IP, Lai TT, et al. Long-term change in renal function after intravitreal anti-VEGF treatment for diabetic macular edema: a 2-year retrospective cohort study[J]. Ophthalmol Ther, 2023, 12(6): 2977-2988.

12.Blasiak J, Pawlowska E, Ciupińska J, et al. A new generation of gene therapies as the future of wet AMD Treatment[J]. Int J Mol Sci, 2024, 25(4): 2386.

13.Fang M, Lu L, Lou J, et al. FGF21 alleviates hypoxic-ischemic white matter injury in neonatal mice by mediating inflammation and oxidative stress through PPAR-γ signaling pathway[J]. Mol Neurobiol, 2025, 62(4): 4743-4768.

14.Chen F, Zhan J, Yan X, et al. FGF21 alleviates microvascular damage following limb ischemia/reperfusion injury by TFEB-mediated autophagy enhancement and anti-oxidative response[J]. Signal Transduct Target Ther, 2022, 7(1): 349.

15.Lee D, Nakai A, Miwa Y, et al. Pemafibrate prevents choroidal neovascularization in a mouse model of neovascular age-related macular degeneration[J]. PeerJ, 2023, 11: e14611.

16.Fu Z, Gong Y, Liegl R, et al. FGF21 administration suppresses retinal and choroidal neovascularization in mice[J]. Cell Rep, 2017, 18(7): 1606-1613.

17.Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice[J]. Cell Metab, 2013, 17(5): 790-797.

18.Higuchi A, Ohashi K, Kihara S, et al. Adiponectin suppresses pathological microvessel formation in retina through modulation of tumor necrosis factor-alpha expression[J]. Circ Res, 2009, 104(9): 1058-1065.

19.Tan H, Yue T, Chen Z, et al. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine[J]. Int J Biol Sci, 2023, 19(1): 66-88.

20.Flippo KH, Potthoff MJ. Metabolic messengers: FGF21[J]. Nat Metab, 2021, 3(3): 309-317.

21.Fu Z, Wang Z, Liu CH, et al. Fibroblast growth factor 21 protects photoreceptor function in type 1 diabetic mice[J]. Diabetes, 2018, 67(5): 974-985.

22.Rose JP, Morgan DA, Sullivan AI, et al. FGF21 reverses MASH through coordinated actions on the CNS and liver[J]. Cell Metab, 2025, 37(7): 1515-1529. e1516.

23.Velingkar A, Vuree S, Prabhakar PK, et al. Fibroblast growth factor 21 as a potential master regulator in metabolic disorders[J]. Am J Physiol Endocrinol Metab, 2023, 324(5): E409-E424.

24.Choi M, Schneeberger M, Fan W, et al. FGF21 counteracts alcohol intoxication by activating the noradrenergic nervous system[J]. Cell Metab, 2023, 35(3): 429-437. e425.

25.Jensen-Cody SO, Flippo KH, Claflin KE, et al. FGF21 signals to glutamatergic neurons in the ventromedial hypothalamus to suppress carbohydrate intake[J]. Cell Metab, 2020, 32(2): 273-286. e276.

26.Canonica J, Foxton R, Garrido MG, et al. Delineating effects of angiopoietin-2 inhibition on vascular permeability and inflammation in models of retinal neovascularization and ischemia/reperfusion[J]. Front Cell Neurosci, 2023, 17: 1192464.

27.Tomita Y, Ozawa N, Miwa Y, et al. Pemafibrate prevents retinal pathological neovascularization by increasing FGF21 level in a murine oxygen-induced retinopathy model[J]. Int J Mol Sci, 2019, 20(23): 5878.

28.Fu Z, Gong Y, Löfqvist C, et al. Review: adiponectin in retinopathy[J]. Biochim Biophys Acta, 2016, 1862(8): 1392-1400.

29.宋维晨, 陈雯, 池敬毅,等. 脂质代谢在新生血管性年龄相关性黄斑变性进展及治疗中的作用[J]. 国际眼科杂志, 2024, 24(9): 1432-1437. [Song WC, Chen W, Chi JY, et al. The role of lipid metabolism in the progression and treatment of neovascular age-related macular degeneration[J]. International Journal of Ophthalmology, 2024, 24(9): 1432-1437.]

30.Hu S, Cao S, Liu J. Role of angiopoietin-2 in the cardioprotective effect of fibroblast growth factor 21 on ischemia/reperfusion-induced injury in H9c2 cardiomyocytes[J]. Exp Ther Med, 2017, 14(1): 771-779.

31.Hu S, Cao S, Tong Z, et al. FGF21 protects myocardial ischemia-reperfusion injury through reduction of miR-145-mediated autophagy[J]. Am J Transl Res, 2018, 10(11): 3677-3688.

32.Campochiaro PA. Molecular pathogenesis of retinal and choroidal vascular diseases[J]. Prog Retin Eye Res, 2015, 49: 67-81.

33.Song H, Li Q, Gui X, et al. Endothelial protein C receptor promotes retinal neovascularization through heme catabolism[J]. Nat Commun, 2025, 16(1): 1603.

34.Yu Y, He J, Li S, et al. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway[J]. Int Immunopharmacol, 2016, 38: 144-152.

35.Wang D, Liu F, Zhu L, et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages[J]. J Neuroinflammation, 2020, 17(1): 257.

36.Pan Y, Wang B, Zheng J, et al. Pancreatic fibroblast growth factor 21 protects against type 2 diabetes in mice by promoting insulin expression and secretion in a PI3K/Akt signaling-dependent manner[J]. J Cell Mol Med, 2019, 23(2): 1059-1071.

37.Xie T, So WY, Li XY, et al. Fibroblast growth factor 21 protects against lipotoxicity-induced pancreatic β-cell dysfunction via regulation of AMPK signaling and lipid metabolism[J]. Clin Sci (Lond), 2019, 133(19): 2029-2044.

38.Cheng STW, Li SYT, Leung PS. Fibroblast growth factor 21 stimulates pancreatic islet autophagy via inhibition of AMPK-mTOR signaling[J]. Int J Mol Sci, 2019, 20(10): 2517.

39.Cao WY, Dong M, Hu ZY, et al. Recombinant Lactococcus lactis NZ3900 expressing bioactive human FGF21 reduced body weight of Db/Db mice through the activity of brown adipose tissue[J]. Benef Microbes, 2020, 11(1): 67-78.

40.Owens DR, Gurudas S, Sivaprasad S, et al. IDF diabetes atlas: a worldwide review of studies utilizing retinal photography to screen for diabetic retinopathy from 2017 to 2024 inclusive[J]. Diabetes Res Clin Pract, 2025, 226: 112346.

41.Singh R, Farooq SA, Mannan A, et al. Animal models of diabetic microvascular complications: relevance to clinical features[J]. Biomed Pharmacother, 2022, 145: 112305.

42.Zibar K, Blaslov K, Bulum T, et al. Basal and postprandial change in serum fibroblast growth factor-21 concentration in type 1 diabetic mellitus and in healthy controls[J]. Endocrine, 2015, 48(3): 848-855.

43.Lin Y, Xiao YC, Zhu H, et al. Serum fibroblast growth factor 21 levels are correlated with the severity of diabetic retinopathy[J]. J Diabetes Res, 2014, 2014: 929756.

44.Jung CH, Jung SH, Kim BY, et al. The U-shaped relationship between fibroblast growth factor 21 and microvascular complication in type 2 diabetes mellitus[J]. J Diabetes Complications, 2017, 31(1): 134-140.

45.Kim JH, Bae KH, Choi YK, et al. Fibroblast growth factor 21 analogue LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function[J]. Diabetes Obes Metab, 2015, 17(2): 161-169.

46.Zhang C, Shao M, Yang H, et al. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation[J]. PLoS One, 2013, 8(12): e82275.

47.Sabri K, Ells AL, Lee EY, et al. Retinopathy of prematurity: a global perspective and recent developments[J]. Pediatrics, 2022, 150(3): e2021053924.

48.Cavallaro G, Filippi L, Bagnoli P, et al. The pathophysiology of retinopathy of prematurity: an update of previous and recent knowledge[J]. Acta Ophthalmol, 2014, 92(1): 2-20.

49.Guasti L, Silvennoinen S, Bulstrode NW, et al. Elevated FGF21 leads to attenuated postnatal linear growth in preterm infants through GH resistance in chondrocytes[J]. J Clin Endocrinol Metab, 2014, 99(11): E2198-2206.

50.Fu Z, Lundgren P, Pivodic A, et al. FGF21 via mitochondrial lipid oxidation promotes physiological vascularization in a mouse model of phase Ⅰ ROP[J]. Angiogenesis, 2023, 26(3): 409-421.

51.Marchesi N, Capierri M, Pascale A, et al. Different therapeutic approaches for dry and wet AMD[J]. Int J Mol Sci, 2024, 25(23): 13053.

52.Deng Y, Qiao L, Du M, et al. Age-related macular degeneration: epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy[J]. Genes Dis, 2022, 9(1): 62-79.

53.Hangai M, He S, Hoffmann S, et al. Sequential induction of angiogenic growth factors by TNF-alpha in choroidal endothelial cells[J]. J Neuroimmunol, 2006, 171(1-2): 45-56.

54.Zhang J, Xie X, Mo Y. Exploring the role of oxidative stress in retinal vein occlusion: an updated and comprehensive review on the pathophysiology and treatment perspectives[J]. Int Ophthalmol, 2025, 45(1): 358.

55.Ip M, Hendrick A. Retinal vein occlusion review[J]. Asia Pac J Ophthalmol (Phila), 2018, 7(1): 40-45.

56.Hayreh SS. Photocoagulation for retinal vein occlusion[J]. Prog Retin Eye Res, 2021, 85: 100964.

57.Spooner KL, Fraser-Bell S, Hong T, et al. Long-term outcomes of anti-VEGF treatment of retinal vein occlusion[J]. Eye (Lond), 2022, 36(6): 1194-1201.

58.Badman MK, Pissios P, Kennedy AR, et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states[J]. Cell Metab, 2007, 5(6): 426-437.

59.Fazeli PK, Lun M, Kim SM, et al. FGF21 and the late adaptive response to starvation in humans[J]. J Clin Invest, 2015, 125(12): 4601-4611.

60.Li S, Song Z, Fan C, et al. Potential of FGF21 in type 2 diabetes mellitus treatment based on untargeted metabolomics[J]. Biochem Pharmacol, 2024, 225: 116306.

61.Li S, Gao J, Song Z, et al. FGF21 alleviates diabetic vasculopathy with NF-κB suppression and fibrinolytic activation[J]. Eur J Pharmacol, 2025, 1007: 178224.

62.Stanislaus S, Hecht R, Yie J, et al. A novel Fc-FGF21 with improved resistance to proteolysis, increased affinity toward β-klotho, and enhanced efficacy in mice and cynomolgus monkeys[J]. Endocrinology, 2017, 158(5): 1314-1327.

63.Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes[J]. Cell Metab, 2013, 18(3): 333-340.

64.Rader DJ, Maratos-Flier E, Nguyen A, et al. LLF580, an FGF21 analog, reduces triglycerides and hepatic fat in obese adults with modest hypertriglyceridemia[J]. J Clin Endocrinol Metab, 2022, 107(1): e57-e70.

65.Thompson KE, Guillot M, Graziano MJ, et al. Pegbelfermin, a PEGylated FGF21 analogue, has pharmacology without bone toxicity after 1-year dosing in skeletally-mature monkeys[J]. Toxicol Appl Pharmacol, 2021, 428: 115673.

66.Choi HS, Lee HA, Kim SW, et al. Association between serum fibroblast growth factor 21 levels and bone mineral density in postmenopausal women[J]. Endocrinol Metab (Seoul), 2018, 33(2): 273-277.

67.Zhou D, Shi Y, Zhang D, et al. Liver-secreted FGF21 induces sarcopenia by inhibiting satellite cell myogenesis via klotho beta in decompensated cirrhosis[J]. Redox Biol, 2024, 76: 103333.

Popular Papers