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【摘要】视网膜新生血管（RNV）性疾病是导致视力障碍和失明的主要原因之一，

包括糖尿病视网膜病变、早产儿视网膜病变、视网膜静脉阻塞以及湿性年龄相关性黄斑变

性等。成纤维细胞生长因子 21（FGF21）作为一种多功能代谢调节因子，被发现对 RNV 形

成具有显著抑制作用。本文系统综述了 FGF21 的生物学特性以及其在 RNV 性疾病中的分

子调控机制和潜在治疗应用，旨在为开发基于 FGF21 的新型视网膜疾病治疗策略提供理论

依 据。
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【Abstract】Retinal neovascularization (RNV) diseases are one of the leading causes of 
visual impairment and blindness, including diabetic retinopathy, retinopathy of prematurity, retinal 
vein obstruction, and wet age-related macular degeneration. In recent years, fibroblast growth factor 
21 (FGF21), a multifunctional metabolic regulator, has been found to exert a significant inhibitory 
effect on RNV. Therefore, this article systematically reviews the biological characteristics of FGF21, 
its molecular regulatory mechanisms in RNV diseases, and its potential therapeutic applications, 
aiming to provide a theoretical basis for developing novel FGF21-based treatment strategies for 
retinal diseases.

【Keywords】Fibroblast growth factor 21; Retinal neovascularization; Diabetic retinopathy; 
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视网膜新生血管（retinal neovascularization，

RNV）性疾病是一组以病理性血管增生为特征的

致盲性眼病，主要包括糖尿病视网膜病变（diabetic 

retinopathy，DR）、早产儿视网膜病变（retinopathy 

of prematurity，ROP）、湿性年龄相关性黄斑变性

（wet age-related macular degeneration，wAMD）、

视网膜静脉阻塞（retinal vein obstruction，RVO）等，

其共同病理特征是异常血管形成，导致视网膜出

血、渗出甚至牵引性视网膜脱离 [1-2]，最终造成

不可逆的视力损害。
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目前，抗血管内皮生长因子（vascular 

endothelial growth factor，VEGF）药物是 RNV性

疾病临床治疗的主要手段 [3]。然而，该疗法存

在显著局限性。首先，耐药性问题日益突出，

约 30% 患者对初始抗 VEGF 治疗无反应，超

50% 病例长期治疗仍存在视网膜积液 [4-6]。部分

患者会出现 " 过速现象 "，在反复注射后逐渐

丧失治疗效果 [7-8]。其次，全身安全性问题不容

忽视，Meta 分析显示长期抗 VEGF 治疗与脑血

管意外风险增加相关，还可能导致高血压、肾

功能损害等系统性不良反应 [9-11]。此外，长期

VEGF 抑制还可能引起视网膜缺血和黄斑萎缩等

眼部并发症 [12]。上述问题凸显了开发新型治疗

策略的必要性。

成纤维细胞生长因子（fibroblast growth 

factor，FGF）21 是 FGF 家族成员之一，最初被

发现作为一种代谢调节激素，主要参与糖脂代谢

平衡。近年研究表明，FGF21 还具有抗氧化、抗

炎和血管保护作用 [13-14]。在眼科疾病领域，多项

研究发现 FGF21 能够有效抑制病理性新生血管

形成，其作用机制涉及调控血管生成因子、改善

糖脂代谢以及发挥抗炎效应 [15-18]。本文综述了

FGF21 在 RNV性疾病中的作用及其调控机制，

为克服当前抗 VEGF 治疗的局限性提供新的研究

方 向。

1  FGF21的结构和生理功能

FGF21 是一种由 208 个氨基酸组成的信号

蛋白，属于 FGF 家族亚科 19 的成员。FGF21 无

肝素结合结构域，其与成纤维细胞生长因子受体

（fibroblast growth factor receptor，FGFR）和共受体

β-Klotho 形成细胞表面受体复合物，作为内分泌

因子进入血液循环并在靶组织中发挥作用 [19]。

FGF21 主要由肝脏、脂肪组织和胰腺分泌，

但近年研究发现视网膜中也有 FGF21 的表达，

其可能以自分泌或旁分泌方式调控视网膜微环

境 [20- 21]。FGF21 可以调节肝脏中的脂质和游离脂

肪酸代谢，防止营养应激因素引起的脂肪中毒 [22]。

脂肪组织是 FGF21 的另一个重要靶点，FGF21 具

有脂肪分解和增加葡萄糖摄取等内分泌作用 [23]。

此外，肝FGF21可以穿透血脑屏障作用于神经元，

减少甜食欲望和酒精偏好，并刺激水的摄入，以

保持代谢平衡 [24-25]。

2  FGF21影响RNV形成的作用机制

2.1  FGF21对血管生成因子的调节作用
RNV 形成受多种血管生成因子调控，其

中VEGF和 血 管 生 成 素-2（angiopoietin-2，

Ang2）是公认的关键驱动因子 [1, 26]。研究表明，

FGF21 可同时调控这两条关键因子。在氧诱导

视网膜病变模型中，过氧化物酶体增殖物激活

受体（peroxisome proliferator activated receptor，

PPAR）激动剂通过上调 FGF21 表达，抑制缺氧

诱导因子 -1α（HIF-1α）转录活性，进而下调

VEGF 表达 [27]。多种 RNV 模型研究证实，FGF21

能够显著提高脂联素（adiponectin，APN）水平 [16]。

APN 不仅可降低 VEGF 水平，还能通过肿瘤坏死

因子 α（tumor necrosis factor-α，TNF-α）依赖的

方式抑制新内膜形成和巨噬细胞炎症 [16, 28-29]。除

调控 VEGF 外，FGF21 还可靶向 Ang2 抑制酪氨

酸激酶受体 2 受体信号通路，破坏血管壁的稳定

性，同时增强内皮细胞对 VEGF 促血管生成作用

的敏感性 [26]。且 FGF21 可抑制 Ang2 表达，该作

用已在心肌损伤模型中得到验 证 [30-31]。

2.2  FGF21的抗炎和抗氧化应激作用
慢性炎症和氧化应激是 RNV性疾病的重要

病理机制 [32-33]，而 FGF21 具有显著抗炎和抗氧

化作用。在抗炎方面，FGF21 以巨噬细胞为主要

靶点，通过增强核因子 E2 相关因子 2（Nrf2）

活性和抑制核因子 κB（NF-κB）信号通路，显

著下调 TNF-α 和白介素 1β（IL-1β）等促炎因子

的表达 [34-35]。在抗氧化应激方面，FGF21 通过

激活 AMP 活化蛋白激酶（AMP-activated protein 

kinase，AMPK）- 线粒体复合物 I 组装因子 NL1

（MCONL1）-钙调磷酸酶（calcineurin）信号通路，

促进转录因子 EB（TFEB）的核转位，进而增强

细胞的抗氧化应激能力 [14]。上述机制可协同抑制

RNV 性疾病中的病理血管生成，并改善视网膜微

环境。

2.3  FGF21对糖脂代谢的调节作用
糖脂代谢紊乱也会促进 RNV 形成，FGF21 可

以通过多途径调控糖脂代谢平衡。在胰腺 β 细胞

中，FGF21 通过激活 PI3K/ Akt 信号通路促进胰岛

素表达和分泌，同时通过 AMPK- ACC 和 PPARδ/
γ 信号通路减少胰岛细胞脂质积累，从而保护 β
细胞免于凋亡和功能障碍 [36-37]。且 FGF21 可通过
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调节 AMPK-mTOR 信号通路诱导胰腺自噬，这

一机制在保护 β 细胞存活和功能方面发挥重要作

用 [38]。在全身代谢调控方面，FGF21 通过降低血

清胰岛素水平和提高胰岛素敏感性来改善胰岛素

抵抗状态，研究证实 FGF21 可通过 FRS2- ERK1/2

信号通路，有效减轻肥胖小鼠和 3T3-L1 脂肪前

体细胞中与肥胖相关的炎症反应 [39]。FGF21 可干

预糖脂代谢紊乱，为RNV性疾病提供治疗新策略。

3  FGF21在RNV性疾病中的作用及临
床应用

3.1  糖尿病视网膜病变
DR 是糖尿病微血管病变中一种重要的并发

症，约有 20%~30% 糖尿病患者发生，其特征是

血管生长停止或丢失引发的眼部缺氧与营养缺

乏，进而病理性地导致新生血管过度生长 [40-41]。

代谢研究显示，1 型糖尿病患者外周血中的

FGF21 水平明显低于健康个体 [42]。然而，在 2 型

糖尿病合并视网膜病变的患者中，血清 FGF21 浓

度显著上升，且其升高幅度与 DR 的临床分期呈

正相关 [43]，提示 FGF21 可能参与 DR 的发生发

展过程。研究发现血清 FGF21 水平与 DR 风险之

间存在 U 型关联，即过低或过高的 FGF21 水平

均可能促进 DR 进展，表明低 FGF21 状态可能直

接参与 DR 发病机制，而高 FGF21 水平可能是机

体的代偿性反应 [44]。动物模型研究进一步揭示了

FGF21 的多重保护作用，在链脲佐菌素诱导的 1

型糖尿病小鼠中，FGF21能有效调控血糖稳态 [45]；

在氧诱导的视网膜病变模型中，外源性 FGF21 给

药可提升视网膜 APN 表达、降低 TNF-α 水平，

并有效抑制病理性 RNV 形成 [16]。此外，FGF21

还具有肾脏保护作用，能够抑制糖尿病小鼠肾脏

的脂质沉积并改善肾功能 [46]。

3.2  早产儿视网膜病变
ROP 是一种复杂的新生儿常见眼病，是全

球范围内导致早产儿可预防性失明的主要原因之

一 [47]。该疾病的发病机制可分为两个关键阶段：Ⅰ
期表现为出生后生理性视网膜血管生长受抑，导

致周边视网膜无血管化；随着视网膜组织不断成

熟，无血管区能量需求增加导致局部缺氧和能量

供应不足，从而触发血管增殖因子的释放，进而

进展为 II 期病变，即病理性新生血管形成 [48]。若

未及时干预，可能最终导致视网膜脱离和永久性

视力损害。

近年研究发现，FGF21 在 ROP 发生发展中

扮演重要角色。临床观察显示，早产儿出生后血

清 FGF21 水平较足月儿显著降低 [49]。动物实验

证实，在高糖诱导的生理血管发育抑制的小鼠模

型（模拟 ROP I 期病变）中，FGF21 的视网膜和

肝脏 mRNA 表达减少，外源性补充 FGF21 可通

过增加 APN 水平和调节脂质代谢（特别是线粒体

脂肪酸 β 氧化）来促进生理性视网膜血管生长，

而 FGF21 的丧失则会进一步减弱生理性视网膜

血管生长 [50]。上述研究提示，FGF21 可能通过改

善 I 期病变的生理性视网膜血管生长抑制，进而

预防 II 期病理性新生血管的形成。此外，循环

中 APN 水平的升高与小鼠 RNV 减少有关，因此

FGF21 也可能通过调节 APN 水平，从而直接在 II
期 ROP 中发挥作用 [16]。

3.3  年龄相关性黄斑变性
年龄相关性黄斑变性在临床上主要分为干

性年龄相关性黄斑变性和 wAMD 两种亚型，其

中 wAMD 的特征性病理改变是脉络膜新生血管

（choroidal neovascularization，CNV）的形成 [51]。

但在病程中，氧化应激反应、慢性炎症状态以及

组织缺氧等致病机制的参与，会导致 Bruch 膜结

构损伤，同时破坏视网膜色素上皮细胞间的紧密

连接，最终促使脉络膜来源的病理性血管向视网

膜内生长，造成不可逆的视力损害 [52]。

研 究 发 现，FGF21 作 为 代 谢 调 节 剂， 对

wAMD 具有显著治疗潜力。在激光诱导的 CNV 小

鼠模型中，FGF21 给药不仅可有效抑制 RNV 与

CNV 形成，还能上调脉络膜 - 视网膜复合体中

APN 表达并降低 TNF-α 水平 [16]。TNF-α 通过促

进内皮细胞出芽而加剧新生血管形成，FGF21 可

通过降低 TNF-α 水平来抑制 CNV 的发展 [53]。在

模拟晚期增殖性 AMD 的极低密度脂蛋白受体缺

失小鼠模型中，FGF21 类似物 PF- 05231023 治疗

同样显示出显著疗效，既能减轻新生血管病变，

又可调节 APN 和 TNF-α 水平 [16]。上述研究为

FGF21 可作为治疗 CNV 的新型靶点提供了强有

力的实验证据。

3.4  视网膜静脉阻塞
RVO 是最常见的视网膜血管闭塞性疾病，

其病理生理机制主要涉及静脉血流受阻导致的视

网膜灌注不足。当静脉阻塞发生时，视网膜组
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织因缺血缺氧而激活 HIF-1α 信号通路，进而促

进 VEGF 等促血管生成因子的过度表达 [54]。这

种病理性改变会引发视网膜血管渗漏、黄斑水肿

以及异常新生血管形成等典型临床表现 [55-56]。抗

VEGF 药物治疗通过中和过量的 VEGF 来改善血

管通透性和抑制新生血管生成，已成为 RVO 的

一线治疗方案 [57]。

研究发现，FGF21 在 RVO 治疗中展现出多

靶点调控优势。在分子机制层面，FGF21 能够直

接抑制 HIF-1α 的转录活性，从而下调 VEGF 的

表达水平 [27]。该调控作用不仅减少了病理性血管

渗漏和新生血管形成，还可能避免长期抗 VEGF

治疗导致的血管萎缩等副作用。其次，FGF21

通过调节 NF-κB 信号通路，显著降低 TNF-α、
IL-1β 等促炎因子的释放，对于改善缺血再灌注

损伤后的炎症微环境尤为重要 [34]。

4  FGF21的治疗潜力与展望

RNV 性疾病作为多种致盲性眼病的共同病理

特征，其治疗一直是眼科领域的重大挑战。近年

研究发现，FGF21 在大量临床前研究中被证实能

显著抑制病理性新生血管形成，展现出良好的治

疗潜力。

与目前一线疗法抗 VEGF 治疗相比，FGF21

的优势在于其多靶点作用特性。FGF21 不仅能下

调促血管生成因子表达 [27, 30]，还通过APN- TNF-α
通路抑制新生血管形成 [16]。同时，FGF21 可能以

自分泌或旁分泌方式参与局部微环境调控，降低

炎症因子水平和调节糖脂代谢来干预 RNV 的重

要病理过程 [34-36, 39]。

然而，将 FGF21 成功转化到临床应用仍面临

诸多挑战，最突出的问题是 FGF21 的生理调控和

功能存在显著的种属差异。在啮齿类动物中，禁

食或生酮饮食能显著上调 FGF21 表达 [58]；而人类

仅长期禁食可诱导 FGF21 升高，且生酮饮食反而

会降低其水平 [59]。这种差异也体现在治疗效果上，

FGF21 在糖尿病小鼠和猴模型中能显著降低血糖

并改善葡萄糖代谢 [60-62]，但在 2 型糖尿病患者的

临床试验中却未能达到预期的血糖控制效果 [63]。

此外，FGF21 的多效性可能带来复杂的生物学效

应。临床研究数据显示，FGF21 可引起骨质流失，

但不同研究结果存在差异 [64-66]。动物实验提示

FGF21 可能促进肌肉萎缩，但在人体中的临床相

关性尚待进一步证实 [67]。上述因素为 FGF21 的临

床应用带来了挑战。

5  结语

FGF21 有望成为 RNV 性疾病的新型治疗选

择，特别是对抗 VEGF 治疗耐药的患者。未来

研究需要重点关注以下几个方向：开发视网膜

靶向递送系统，提高药物靶向性并减少副作用；

探索与抗 VEGF 药物联合治疗策略具有重要前

景，通过多靶点干预不同病理机制，可能实现

协同增效；构建更贴近人类疾病特征的动物模

型，可显著增强临床前研究的转化价值和预测

效力。
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