Alopecia areata (AA) is a common clinical hair disorder characterized by sudden, round or oval-shaped non-scarring alopecic patches. In severe cases, it may involve the entire scalp, nails, and eyebrows. Animal models play an indispensable role in exploring the pathogenesis of AA and developing therapeutic strategies. This article systematically reviews 13 types of AA animal models and 2 categories of AA mathematical models. It comprehensively analyzes spontaneous models (such as C3H/HeJ mice, DEBR rats and B6.KM-AA mice), induced models (including skin grafts, lymph node cell injections, and drug-induced methods), humanized models, and genetically engineered models. Additionally, it evaluates the current applications of both mechanism-driven and data-driven mathematical models and provides a reference for future research and the construction of ideal experimental systems in AA research.
HomeArticlesVol 35,2025 No.11Detail
The pathogenesis model research of alopecia areata: from animal experiments to mathematical prediction models
Published on Nov. 28, 2025Total Views: 869 timesTotal Downloads: 223 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Zaaroura H, Gilding AJ, Sibbald C. Biomarkers in alopecia areata: a systematic review and Meta-analysis[J]. Autoimmun Rev, 2023, 22(7): 103339. DOI: 10.1016/j.autrev.2023.103339.
2.Gaurav A, Eang B, Mostaghimi A. Alopecia areata[J]. JAMA Dermatol, 2024, 160(3): 372. DOI: 10.1001/jamadermatol.2023.4661.
3.Jeon JJ, Jung SW, Kim YH, et al. Global, regional and national epidemiology of alopecia areata: a systematic review and modelling study[J]. Br J Dermatol, 2024, 191(3): 325-335. DOI: 10.1093/bjd/ljae058.
4.Li X, Liu H, Ren W, et al. Burden of alopecia areata in China, 1990-2021: Global Burden of Disease Study 2021[J]. Chin Med J (Engl), 2025, 138(03): 318-324. DOI: 10.1097/CM9.0000000000003373.
5.梁桂莲, 陈思丹, 肖海晴, 等. 中医药治疗斑秃研究概况 [J]. 亚太传统医药, 2021, 17(12): 218-220. [Liang GL, Chen SD, Xiao HQ, et al. Overview of research on traditional Chinese medicine in the treatment of alopecia areata[J]. Asia-Pacific Traditional Medicine, 2021, 17(12): 218-220. DOI: 10.11954/ytctyy.202112054.
6.Buket Basmanav F, Betz RC. Recent advances in the genetics of alopecia areata[J]. Med Genet, 2023, 35(1): 15-22. DOI: 10.1515/medgen-2023-2004.
7.Šutić Udović I, Hlača N, Massari LP, et al. Deciphering the complex immunopathogenesis of alopecia areata[J]. Int J Mol Sci, 2024, 25(11): 5652. DOI: 10.3390/ijms25115652.
8.Gilhar A, Schrum AG, Etzioni A, et al. Alopecia areata: animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies[J]. Autoimmun Rev, 2016, 15(7): 726-735. DOI: 10.1016/j.autrev.2016.03.008.
9.Gilhar A, Laufer Britva R, Keren A, et al. Mouse models of alopecia areata: C3H/HeJ mice versus the humanized AA mouse model[J]. J Investig Dermatol Symp Proc, 2020, 20(1): S11-S15. DOI: 10.1016/j.jisp.2020.05.001.
10.Sundberg JP, Cordy WR, King LE Jr. Alopecia areata in aging C3H/HeJ mice[J]. J Invest Dermatol, 1994, 102(6): 847-856. DOI: 10.1111/1523-1747.ep12382416.
11.He X, Liu J, Gong Y, et al. Amygdalin ameliorates alopecia areata on C3H/HeJ mice by inhibiting inflammation through JAK2/STAT3 pathway[J]. J Ethnopharmacol, 2024, 331: 118317. DOI: 10.1016/j.jep.2024.118317.
12.Dai Z, Chang Y, Christiano A. 863 Blocking the LFA-1 signaling pathway reverses alopecia areata in C3H/HeJ mice[J]. Journal of Investigative Dermatology, 2022, 142(8): S149 DOI: 10.1016/j.jid.2022.05.877.
13.Michie HJ, Jahoda CA, Oliver RF, et al. The DEBR rat: an animal model of human alopecia areata[J]. Br J Dermatol, 1991, 125(2): 94-100. DOI: 10.1111/j.1365-2133.1991.tb06054.x.
14.Ungar B, Renert-Yuval Y, Dlova NC, et al. Alopecia areata[J]. Nat Rev Dis Primers, 2025, 11(1): 77. DOI: 10.1038/s41572-025-00664-9.
15.Gonzalez A. Upregulation of BST2 on epidermal gamma delta T cells and dermal macrophages in alopecia areata[D]. California State University San Marcos, 2022.
16.Gu ME, Song XM, Zhu CF, et al. Breeding and preliminarily phenotyping of a congenic mouse model with alopecia areata[J]. Dongwuxue Yanjiu, 2014, 35(4): 249-255. DOI: 10.13918/j.issn.2095-8137.2014.4.249.
17.赵恒光. 咪喹莫特诱导C3H/HeJ小鼠斑秃动物模型的建立及发病机理初步研究[D]. 重庆: 重庆医科大学, 2007. [Zhao HG. Establishment of a midostaurin-induced alopecia areata animal model in C3H/HeJ mice and preliminary study of the pathogenesis[D]. Chongqing: Chongqing Medical University, 2007.]
18.Zhang Y, Li L, Cao L, et al. Investigating the potential mechanism of microneedling in alopecia areata mice based on 16S rRNA sequencing and metabolomics[J]. Front Microbiol, 2025, 16: 1649496. DOI: 10.3389/fmicb.2025.1649496.
19.郑玲玲,李旺廷,张璐璐,等. 咪喹莫特两种给药方式构建斑秃动物模型的稳定性研究[J]. 空军军医大学学报, 2025, 46(4): 514-520. [Zheng LL, Li WT, Zhang LL, et al.Stability study of two administration methods of midostaurin in constructing an alopecia areata animal model[J]. Journal of Air Force Medical University, 2025, 46(4): 514-520.] DOI: 10.13276/j.issn.2097-1656.2025.04.014.
20.McElwee KJ, Boggess D, King LE Jr, et al. Experimental induction of alopecia areata-like hair loss in C3H/HeJ mice using full-thickness skin grafts[J]. Invest Dermatol, 1998, 111(5): 797-803. DOI: 10.1046/j.1523-1747.1998.00380.x.
21.Gund R, Christiano AM. Impaired autophagy promotes hair loss in the C3H/HeJ mouse model of alopecia areata[J]. Autophagy, 2023, 19(1): 296-305. DOI: 10.1080/15548627.2022.2074104.
22.Yi H, Jian X, Cai Y, et al. 452 Braicitinib treatment reduced the expansion of CD8+ T cells in C3H mice with skin grafts-induced alopecia areata[J]. BMJ Specialist Journals, 2023. DOI: 10.1136/jitc-2023-SITC2023.0452.
23.Xuan X, Zhang G, Zhang J, et al. Mechanistic study of erianin in alopecia areata[J]. Am J Transl Res, 2025, 17(1): 550-559. DOI: 10.62347/DHJM6411.
24.Wang EHC, McElwee KJ. Nonsurgical induction of alopecia areata in C3H/HeJ mice via adoptive transfer of cultured lymphoid cells[J]. Methods Mol Biol, 2020, 2154: 121-131. DOI: 10.1007/978-1-0716-0648-3_10.
25.Hashimoto K, Yamada Y, Sekiguchi K, et al. Induction of alopecia areata in C3H/HeJ mice using cryopreserved lymphocytes[J]. J Dermatol Sci, 2021, 102(3): 177-183. DOI: 10.1016/j.jdermsci. 2021.04.009.
26.Hashimoto K, Yamada Y, Sekiguchi K, et al. NLRP3 inflammasome activation contributes to development of alopecia areata in C3H/HeJ mice[J]. Exp Dermatol, 2022, 31(2): 133-142. DOI: 10.1111/exd.14432.
27.Gilhar A, KamY, Assy B, et al. Alopecia areata inducedinC3H/HeJ mice by interferon-gamma: evidence for loss of immune privilege[J]. J Invest Dermatol. 2005, 124(1):288-289. DOI: 10.1111/j.0022-202X.2004.23580.x.
28.Park SH, Song SW, Lee YJ, et al. Mesenchymal stem cell therapy in alopecia areata: visual and molecular evidence from a mouse model[J]. Int J Mol Sci, 2024, 25(17): 9236. DOI: 10.3390/ijms25179236.
29.Gaumond SI, Beraja GE, Kamholtz I, et al. Chemotherapy-induced alopecia in ovarian cancer: incidence, mechanisms, and impact across treatment regimens[J]. Cancers, 2025, 17(3): 411. DOI: 10.3390/cancers17030411.
30.Xu W, Li Y, Wan S, Zhang B, et al. S100A8 induces cyclophosphamide-inducedalopecia viaNCF2/NOX2-mediated ferroptosis[J]. Free Radic Biol Med, 2025, 230: 112-126.DOI: 10.1016/j.freeradbiomed.2025.02.014.
31.Alli R, Nguyen P, Boyd K, et al. A mouse model of clonal CD8+ T lymphocyte-mediated alopecia areata progressing to alopecia universalis[J]. J Immunol, 2012, 188(1): 477-486. DOI: 10.4049/jimmunol.1100657.
32.Xuan X, Zhang G, Zhang J, et al. Mechanism of PPARα agonist in alopecia areata[J]. Am J Transl Res, 2025, 17(2): 844. DOI: 10.62347/JDYZ3863.
33.Kutlu Ö, Aktaş H, İmren IG, et al. Short-term stress-related increasing cases of alopecia areata during the COVID-19 pandemic[J]. J Dermatolog Treat, 2022, 33(2): 1177. DOI: 10.1080/09546634.2020.1782820.
34.吕书影, 曲保全, 林文君, 等. 咪喹莫特联合慢性温和性不可预知应激建立斑秃样小鼠模型[J]. 中国实验动物学报, 2023, 31(7): 846-852. [Lyu SX, Qu BQ, Lin WJ, et al. Establishment of an alopecia areata-like mouse model using midostaurin combined with chronic mild unpredictable stress[J]. Chinese Journal of Experimental Animals, 2023, 31(7): 846-852.] DOI: 10.3969/j.issn.1005-4847.2023.07.002.
35.Gilhar A, Ullmann Y, Berkutzki T, et al. Autoimmune hair loss (alopecia areata) transferred by T lymphocytes to human scalp explants on SCID mice[J]. J Clin Invest, 1998, 101(1): 62-67. DOI: 10.1172/JCI551.
36.Gilhar A, Keren A, Shemer A, et al. Autoimmune disease induction in a healthy human organ: a humanized mouse model of alopecia areata[J]. J Invest Dermatol, 2013, 133(3): 844-847. DOI: 10.1038/jid.2012.365.
37.Laufer Britva R, Keren A, Paus R, et al. Apremilast and tofacitinib exert differential effects in the humanized mouse model of alopecia areata[J]. Br J Dermatol, 2020, 182(1): 227-229. DOI: 10.1111/bjd.18264.
38.张令天. CRISPR/Cas9技术构建LOC108637647基因敲入小鼠及被毛研究[D]. 呼和浩特: 内蒙古农业大学, 2022. [Zhang LT. Construction of LOC108637647 gene knock-in mice using CRISPR/Cas9 technology and study of hair[D]. Hohhot: Inner Mongolia Agricultural University, 2022.]
39.Arakawa Y, Tamagawa-Mineoka R, Ueta M, et al. IKZF1 and ikaros overexpression results in alopecia areata-like phenotype in mice[J]. Exp Dermatol, 2025, 34(3): e70074. DOI: 10.1111/exd.70074.
40.Dobreva A, Paus R, Cogan NG. Mathematical model for alopecia areata[J]. J Theor Biol, 2015, 380: 332-345. DOI: 10.1016/j.jtbi.2015.05.033.
41.Alzubadi H. Mathematical modeling of alopecia areata: unraveling hair cycle dynamics, disease progression, and treatment strategies[J]. Applied Mathematics and Nonlinear Sciences, 2024, 9(1). DOI: 10.2478/amns-2024-0847.
42.Alzubadi HA. A temporal mathematical model of alopecia areata: investigatinghair cycle dynamics and disease progression[J]. Researchsquare(Version1), 2024. DOI: 10.21203/rs.3.rs-4082170/v110.21203/rs.3.rs-4082170/v1.
43.Kallipolitis A, Moutselos K, Zafeiriou A, et al. Skin image analysis for detection and quantitative assessment of dermatitis, vitiligo and alopecia areata lesions: a systematic literature review[J]. BMC Med Inform Decis Mak, 2025, 25(1): 10. DOI: 10.1186/s12911-024-02843-2.
44.Mittal A, Biswas DB, Karthikeyan U. Prediction of alopecia areata using CNN[C]. 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). IEEE, 2023: 141-144.
45.Khan HA, Adnan SM. A novel fusion technique for early detection of alopecia areata using ResNet-50 and CRSHOG[J]. IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3461324.
46.Caro RDC, Orlova V, Meo ND, et al. Analysis of trichoscopic images using deep neural networks for the diagnosis and activity assessment of alopecia areata-a retrospective study[J]. J Dtsch Dermatol Ges, 2025. DOI: 10.1111/ddg.15847.
47.Sayyad S, Sayyad F, Mithunchakravati D. Deep review on alopecia areata diagnosis for hair loss related autoimmune disorder problem[J]. International Journal of Applied Pharmaceutics, 2022, 14: 8-12. DOI: 10.22159/ijap.2022.v14ti.19.
Popular Papers
-
Mediating effects of social support and health literacy on self-efficacy and self-advocacy in patients with postoperative chemotherapy for breast cancer
Aug. 25, 20256888
-
Digital health interventions on chronic obstructive pulmonary disease: a scoping review
Jul. 25, 20256031
-
Analysis of depression burden and attribution risk factors among Chinese adolescents aged 10~24 from 1990 to 2021
Sep. 26, 20255695
-
Relation between suicide ideation and depression, anxious symptoms, rumination and self-acceptance in adolescents with depressive disorder
Jul. 25, 20255556
-
Frontier progress and future strategies in the treatment of pulmonary fibrosis
Aug. 25, 20255534
-
Bibliometric analysis of reseach on rehabilitation training of developmental dysplasia of the hip
Jul. 25, 20255416
-
Analysis of the detection status and influencing factors of breast nodules in women in Zhangjiakou
Jul. 25, 20255249
-
Trends in the burden of spinal cord injury in China from 1990 to 2021
Jul. 25, 20255053
-
Difference analysis of hypertension risk factors of residents aged 40 and above in Zhongshan
Jul. 25, 20255011
-
The impact of ω-3 polyunsaturated fatty acids on the recovery of autonomic nervous and intestinal functions following robot-assisted gastrectomy
Jul. 25, 20254810
-
WTAP promotes lipopolysaccharides-induced ferroptosis in human renal tubular epithelial cells by regulating ACSL4 m6A methylation
Jul. 25, 20254723
-
The role of zinc homeostasis in prostate diseases and potential mechanisms
Jul. 25, 20254586
-
Construction and validation of a prognostic prediction model for osteosarcoma in children based on the SEER database
Jul. 25, 20254584
-
Analysis of cancer disease burden in China from 1990 to 2021
Aug. 25, 20254473
-
Effect of trans-theoretical model-based health education on self-management behaviors of patients with systemic lupus erythematosus
Jul. 25, 20254243
Welcome to visit Zhongnan Medical Journal Press Series journal website!