Ischemic stroke (IS) is a leading cause of death and disability worldwide, with complex pathophysiological mechanisms posing significant challenges to clinical treatment. In recent years, nanotechnology has shown broad prospects in the treatment of IS due to its excellent biocompatibility, high specific surface area, and outstanding drug loading capacity. This review systematically summarizes the progress of nanomaterials in IS treatment, focusing on their functional characteristics, targeting strategies, and controlled drug release technologies, aiming to optimize the design and functionality of nanomaterials to facilitate their transition from laboratory studies to clinical applications.
HomeArticlesVol 35,2025 No.11Detail
Application and research progress of nanomaterials in ischemic stroke therapy
Published on Nov. 28, 2025Total Views: 110 timesTotal Downloads: 31 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820. DOI: 10.1016/S1474-4422(21)00252-0.
2.Qin C, Yang S, Chu YH, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2022, 7(1): 215. DOI: 10.1038/s41392-022-01064-1.
3.George PM, Steinberg GK. Novel stroke therapeutics: unraveling stroke pathophysiology and its impact on clinical treatments[J]. Neuron, 2015, 87(2): 297-309. DOI: 10.1016/j.neuron.2015.05.041.
4.Tuo Q, Zhang S, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications[J]. Med Res Rev, 2022, 42(1): 259-305. DOI: 10.1002/med.21817.
5.Tsivgoulis G, Katsanos AH, Sandset EC, et al. Thrombolysis for acute ischaemic stroke: current status and future perspectives[J]. Lancet Neurol, 2023, 22(5): 418-429. DOI: 10.1016/S1474-4422(22)00519-1.
6.Yoshimura S, Sakai N, Yamagami H, et al. Endovascular therapy for acute stroke with a large ischemic region[J]. N Engl J Med, 2022, 386(14): 1303-1313. DOI: 10.1056/NEJMoa2118191.
7.dela Peña I, Borlongan C, Shen G, et al. Strategies to extend thrombolytic time window for ischemic stroke treatment: an unmet clinical need[J]. J Stroke, 2017, 19(1): 50-60. DOI: 10.5853/jos.2016.01515.
8.Jin X, Liu J, Liu W. Early ischemic blood brain barrier damage: a potential indicator for hemorrhagic transformation following tissue plasminogen activator (tPA) thrombolysis?[J]. Curr Neurovasc Res, 2014, 11(3): 254-262. DOI: 10.2174/1567202611666140530145643.
9.Lyu W, Liu Y, Li S, et al. Advances of nano drug delivery system for the theranostics of ischemic stroke[J]. J Nanobiotechnol, 2022, 20(1): 248. DOI: 10.1186/s12951-022-01450-5.
10.Huang G, Zang J, He L, et al. Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke[J]. ACS Nano, 2021, 16(1): 431-452. DOI: 10.1021/acsnano.1c07205.
11.Tian R, Ma H, Ye W, et al. Se-containing MOF coated dual-Fe-atom nanozymes with multi-enzyme cascade activities protect against cerebral ischemic reperfusion injury[J]. Adv Funct Mater, 2022, 32(36): 2204025. DOI: 10.1002/adfm.202204025.
12.Liu H, Zhuo R, Zou C, et al. RVG-peptide-camouflaged iron-coordinated engineered polydopamine nanoenzyme with ROS scavenging and inhibiting inflammatory response for ischemic stroke therapy[J]. Int J Biol Macromol, 2024, 282: 136778. DOI: 10.1016/j.ijbiomac.2024.136778.
13.Qi M, Cheng Y, Liu K, et al. Recombinant human heavy chain ferritin nanoparticles serve as ROS scavengers for the treatment of ischemic stroke[J]. Int J Nanomedicine, 2024: 2285-2299. DOI: 10.2147/IJN.S449606.
14.Vazquez-Prada KX, Moonshi SS, Xu ZP, et al. Photothermal nanomaterials for theranostics of atherosclerosis and thrombosis[J]. Appl Mater Today, 2023, 35: 101967. DOI: 10.1016/j.apmt.2023. 101967.
15.Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7): 2053-2108. DOI: 10.1039/C8CS00618K.
16.Li S, Zhang K, Ma Z, et al. Biomimetic nanoplatelets to target delivery hirudin for site-specific photothermal/photodynamic thrombolysis and preventing venous thrombus formation[J]. Small, 2022, 18(51): 2203184. DOI: 10.1002/smll.202203184.
17.Vazquez-Prada KX, Moonshi SS, Wu Y, et al. A spiky silver-iron oxide nanoparticle for highly efficient targeted photothermal therapy and multimodal imaging of thrombosis[J]. Small, 2023, 19(11): 2205744. DOI: 10.1002/smll.202205744.
18.Shi J, Yu W, Xu L, et al. Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxygen regulating[J]. Nano Lett, 2019, 20(1): 780-789. DOI: 10.1021/acs.nanolett.9b04974.
19.Nong J, Glassman PM, Shuvaev VV, et al. Targeting lipid nanoparticles to the blood-brain barrier to ameliorate acute ischemic stroke[J]. Mol Ther, 2024, 32(5): 1344-1358. DOI: 10.1016/j.ymthe.2024.03.004.
20.Dong Z, Tang L, Zhang Y, et al. A homing peptide modified neutrophil membrane biomimetic nanoparticles in response to ROS/inflammatory microenvironment for precise targeting treatment of ischemic stroke[J]. Adv Funct Mater, 2024, 34(4): 2309167. DOI: 10.1002/adfm.202309167.
21.Deng L, Zhang F, Wu Y, et al. RGD-modified nanocarrier-mediated targeted delivery of HIF-1α-AA plasmid DNA to cerebrovascular endothelial cells for ischemic stroke treatment[J]. ACS Biomater Sci Eng, 2019, 5(11): 6254-6264. DOI: 10.1021/acsbiomaterials.9b01362.
22.Yang Q, Li R, Hong Y, et al. Curcumin-loaded gelatin nanoparticles cross the blood-brain barrier to treat ischemic stroke by attenuating oxidative stress and neuroinflammation[J]. Int J Nanomedicine, 2024: 11633-11649. DOI: 10.2147/IJN.S487628.
23.Shi W, Yuan S, Cheng G, et al. Blood brain barrier-targeted lipid nanoparticles improved the neuroprotection of Ferrostatin-1 against cerebral ischemic damage in an experimental stroke model[J]. Exp Neurol, 2024, 379: 114849. DOI: 10.1016/j.expneurol.2024.114849.
24.Cheng R, Luo X, Wu X, et al. Artificial microglia nanoplatform loaded with anti-RGMa in acoustic/magnetic field for recanalization and neuroprotection in acute ischemic stroke[J]. Adv Sci (Weinh), 2024, 11(48): 2410529. DOI: 10.1002/advs.202410529.
25.Li Y, Teng X, Yang C, et al. Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy[J]. Angew Chem Int Ed Engl, 2021, 60(10): 5083-5090. DOI: 10.1002/anie.202010391.
26.Shao J, Abdelghani M, Shen G, et al. Erythrocyte membrane modified Janus polymeric motors for thrombus therapy[J]. ACS Nano, 2018, 12(5): 4877-4885. DOI: 10.1021/acsnano.8b01772.
27.He W, Mei Q, Li J, et al. Preferential targeting cerebral ischemic lesions with cancer cell-inspired nanovehicle for ischemic stroke treatment[J]. Nano Lett, 2021, 21(7): 3033-3043. DOI: 10.1021/acs.nanolett.1c00231.
28.Ma J, Zhang S, Liu J, et al. Targeted drug delivery to stroke via chemotactic recruitment of nanoparticles coated with membrane of engineered neural stem cells[J]. Small, 2019, 15(35): 1902011. DOI: 10.1002/smll.201902011.
29.Zhang Q, Li S, Chen H, et al. Reduction of oxidative stress and excitotoxicity by mesenchymal stem cell biomimetic co-delivery system for cerebral ischemia-reperfusion injury treatment[J]. Small, 2024, 20(43): 2401045. DOI: 10.1002/smll.202401045.
30.Pan J, Wang Z, Huang X, et al. Bacteria-derived outer-membrane vesicles hitchhike neutrophils to enhance ischemic stroke therapy[J]. Adv Mater, 2023, 35(38): e2301779. DOI: 10.1002/adma.202301779.
31.Tang C, Jia F, Wu M, et al. Elastase-targeting biomimic nanoplatform for neurovascular remodeling by inhibiting NETosis mediated AIM2 inflammasome activation in ischemic stroke[J]. J Control Release, 2024, 375: 404-421. DOI: 10.1016/j.jconrel.2024.09.026.
32.Tang L, Yin Y, Liu H, et al. Blood-brain barrier-penetrating and lesion-targeting nanoplatforms inspired by the pathophysiological features for synergistic ischemic stroke therapy[J]. Adv Mater, 2024, 36(21): e2312897. DOI: 10.1002/adma.202312897.
33.Wang C, Xiao Z, Fan J, et al. Nanocarriers loaded with danshensu for treating ischemic stroke by reducing oxidative stress and glial overactivation[J]. ACS Omega, 2024, 9(33): 35686-35694. DOI: 10.1021/acsomega.4c03991.
34.Cao W, Gu Y, Li T, et al. Ultra-sensitive ROS-responsive tellurium-containing polymers[J]. Chem Commun, 2015, 51(32): 7069-7071. DOI: 10.1039/C5CC01779C.
35.Jian C, Hong Y, Liu H, et al. ROS-responsive quercetin-based polydopamine nanoparticles for targeting ischemic stroke by attenuating oxidative stress and neuroinflammation[J]. Int J Pharm, 2025, 669: 125087. DOI: 10.1016/j.ijpharm.2024.125087.
36.Mei T, Zhang P, Hu Y, et al. Engineering hirudin encapsulation in pH-responsive antioxidant nanoparticles for therapeutic efficacy in ischemic stroke model mice[J]. Biomaterials, 2025, 314: 122860. DOI: 10.1016/j.biomaterials.2024.122860.
37.Refaat A, del Rosal B, Palasubramaniam J, et al. Near-infrared light-responsive liposomes for protein delivery: towards bleeding-free photothermally-assisted thrombolysis[J]. J Control Release, 2021, 337: 212-223. DOI: 10.1016/j.jconrel.2021.07.024.
38.Grayston A, Zhang Y, Garcia-Gabilondo M, et al. Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke[J]. J Cereb Blood Flow Metab, 2022, 42(2): 237-252. DOI: 10.1177/0271678X211028816.
39.Li Y, Teng X, Yang C, et al. Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy[J]. Angew Chem Int Ed, 2021, 60(10): 5083-5090. DOI: 10.1002/anie.202010391.
40.Jiang M, Zhu Z, Zhou Z, et al. A temperature-ultrasound sensitive nanoparticle delivery system for exploring central neuroinflammation mechanism in stroke-heart syndrome[J]. J Nanobiotechnol, 2024, 22(1): 681. DOI: 10.1186/s12951-024-02961-z.
Popular Papers
-
Clinical progress of cadonilimab in the treatment of malignant tumor
Jun. 25, 20256774
-
Mediating effects of social support and health literacy on self-efficacy and self-advocacy in patients with postoperative chemotherapy for breast cancer
Aug. 25, 20255603
-
Barriers and facilitators to the implementation of integrated community multimorbidity care model in Shanghai-a qualitative study based on normative process theory
Jun. 25, 20255305
-
Study on the correlation between serum β2-microglobulin, cystatin C, urea levels and hypertensive nephropathy in elderly undergoing health checkups
Jun. 25, 20255152
-
Current status of fertility stress in infertile women: mechanisms of mindfulness traits, stress coping styles, and family functioning
Jun. 25, 20254770
-
Analysis and thinking of promoting high-quality operation of information system of standardized training for resident physicians from the perspective of new quality productivity
Jun. 25, 20254756
-
Molecular mechanisms of ferroptosis in Alzheimer's disease and breakthroughs in targeted therapeutics: translational advances from bench to bedside
Jun. 25, 20254748
-
Digital health interventions on chronic obstructive pulmonary disease: a scoping review
Jul. 25, 20254640
-
Application value of multimodal ultrasound in screening for sarcopenia in the elderly
Jun. 25, 20254525
-
Bibliometric analysis of reseach on rehabilitation training of developmental dysplasia of the hip
Jul. 25, 20254367
-
Development of "comorbidity—co-causes—joint-prevention" comprehensive intervention strategy for adolescent depression and obesity
Jun. 25, 20254363
-
Research progress in quality assessment methods for oocytes
Jun. 25, 20254282
-
Mendelian randomization study on the relationship between fibroblast growth factors and their receptors and the risk of spontaneous abortion
Jun. 25, 20254259
-
Implementation effect of the clinical practice guideline for type 2 diabetes mellitus in public hospitals in China: a cross-sectional study using the A-GIST tool
Jun. 25, 20254018
-
Analysis of global disease burden equity of ischemic stroke from 1990 to 2021
Jun. 25, 20253945
Welcome to visit Zhongnan Medical Journal Press Series journal website!