Glaucoma is the most common cause of irreversible blindness in the world, of which pathogenesis, such as autoimmune mechanism and inflammation theory, has been the focus of research in recent years. Interleukin(IL) is a key cytokine-mediated immunity, and may be involved in the pathogenesis of glaucoma. IL-1, IL-8 and IL-17, as the representative pro-inflammatory cytokines, are involved from the discharge of aqueous humor in the anterior segment to the loss of nerve cells in the posterior segment of the eye. As a pleiotropic cytokine, whether IL-6 plays a positive or negative role in glaucoma is still controversial. Anti-inflammatory factors such as IL- 10, IL-4 and IL-13 can protect retinal ganglion cells. This paper reviews the literature on the relationship between IL and glaucoma in recent years, hoping to provide the theoretical basis for the follow-up study on the pathogenesis of glaucoma and the development of new drugs.
HomeArticlesVol 34,2024 No.7Detail
Recent research progress on the role of interleukin in glaucoma
Published on Jul. 30, 2024Total Views: 824 timesTotal Downloads: 288 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.中华医学会眼科学分会青光眼学组, 中国医师协会眼科医师分会青光眼学组. 中国青光眼指南(2020年)[J]. 中华眼科杂志, 2020, 56(8): 573-586. [Glaucoma Group of Ophthalmology Branch of Chinese Medical Association, Glaucoma Group of the Ophthalmologist Branch of the Chinese Medical Doctor Association. Guidelines for glaucoma in China(2020)[J]. Chinese Journal of Ophthalmology, 2020, 56(8): 573-586.]. DOI: 10.3760/cma.j.cn112142-20200313-00182.
2.Stepp MA, Menko AS. Immune responses to injury and their links to eye disease[J]. Transl Res, 2021, 236: 52-71. DOI: 10.1016/j.trsl.2021.05.005.
3.Akhter S, Tasnim FM, Islam MN, et al. Role of Th17 and IL-17 cytokines on inflammatory and auto-immune diseases[J]. Curr Pharm Des, 2023, 29(26): 2078-2090. DOI: 10.2174/1381612829666230904150808.
4.Fields JK, Günther S, Sundberg EJ. Structural basis of IL-1 family cytokine signaling[J]. Front Immunol, 2019, 10: 1412. DOI: 10.3389/fimmu.2019.01412.
5.Li S, Zhang H, Shao M, et al. Association between 17-β-estradiol and interleukin-8 and visual field progression in postmenopausal women with primary angle closure glaucoma[J]. Am J Ophthalmol, 2020, 217: 55-67. DOI: 10.1016/j.ajo.2020.04.033.
6.Song Y, Song Q, Li L, et al. Effect of ranibizumab on levels of IL-6 and VEGF in peripheral blood and aqueous humor of glaucoma rat model and association of IL-6 and VEGF with optic nerve damage[J]. Exp Ther Med, 2018, 16(3): 2506-2510. DOI: 10.3892/etm.2018.6441.
7.Pahlitzsch M, Fritsche-Guenther R, Pompös I, et al. Correlation of NUCB2/Nesfatin-1 with cytokine levels in primary open-angle glaucoma[J]. Clin Ophthalmol, 2021, 15: 2505-2517. DOI: 10.1177/OPTH.S307379.
8.Wooff Y, Man SM, Aggio-Bruce R, et al. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases [J]. Front Immunol, 2019, 10: 1618. DOI: 10.3389/fimmu.2019.01618.
9.Chen H, Deng Y, Gan X, et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma[J]. Mol Neurodegener, 2020, 15(1): 26. DOI: 10.1186/s13024-020-00372-w.
10.Coyle S, Khan MN, Chemaly M, et al. Targeting the NLRP3 inflammasome in glaucoma[J]. Biomolecules, 2021, 11(8): 1239. DOI: 10.3390/biom11081239.
11.Lin FL, Cheng YW, Yu M, et al. The fungus-derived retinoprotectant theissenolactone C improves glaucoma-like injury mediated by MMP-9 inhibition[J]. Phytomedicine, 2019, 56: 207-214. DOI: 10.1016/j.phymed.2018.11.002.
12.Sterling JK, Adetunji MO, Guttha S, et al. GLP-1 receptor agonist NLY01 reduces retinal inflammation and neuron death secondary to ocular hypertension[J]. Cell Rep, 2020, 33(5): 108271. DOI: 10.1016/j.celrep.2020.108271.
13.Mathew DJ, Livne-Bar I, Sivak JM. An inducible rodent glaucoma model that exhibits gradual sustained increase in intraocular pressure with distinct inner retina and optic nerve inflammation[J]. Sci Rep, 2021, 11(1): 22880. DOI: 10.1038/s41598-021-02057-w.
14.Zhang JL, Song XY, Chen YY, et al. Novel inflammatory cytokines (IL-36, 37, 38) in the aqueous humor from patients with chronic primary angle closure glaucoma[J]. Int Immunopharmacol, 2019, 71: 164-168. DOI: 10.1016/j.intimp.2019.03.016.
15.Hu X, Zhao GL, Xu MX, et al. Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma[J]. J Neuroinflammation, 2021, 18(1): 303. DOI: 10.1186/s12974-021-02366-x.
16.Yu-Wai-Man C, Tagalakis AD, Meng J, et al. Genotype-phenotype associations of IL6 and PRG4 with conjunctival fibrosis after glaucoma surgery[J]. JAMA Ophthalmol, 2017, 135(11): 1147-1155. DOI: 10.1001/jamaophthalmol.2017.3407.
17.Qi T, Jing R, Wen C, et al. Interleukin-6 promotes migration and extracellular matrix synthesis in retinal pigment epithelial cells[J]. Histochem Cell Biol, 2020, 154(6): 629-638. DOI: 10.1007/s00418-020-01923-4.
18.Yemanyi F, Raghunathan V. Lysophosphatidic acid and IL-6 trans-signaling interact via YAP/TAZ and STAT3 signaling pathways in human trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci, 2020, 61(13): 29. DOI: 10.1167/iovs.61.13.29.
19.Inoue-Mochita M, Inoue T, Kojima S, et al. Interleukin-6-mediated trans-signaling inhibits transforming growth factor-β signaling in trabecular meshwork cells[J]. J Biol Chem, 2018, 293(28): 10975-10984. DOI: 10.1074/jbc.RA118.003298.
20.Perígolo-Vicente R, Ritt K, Gonçalves-de-Albuquerque CF, et al. IL-6, A1 and A2aR: a crosstalk that modulates BDNF and induces neuroprotection[J]. Biochem Biophys Res Commun, 2014, 449(4): 477-482. DOI: 10.1016/j.bbrc.2014.05.036.
21.Gonzalez-Aparicio M, Alfaro C. Significance of the IL-8 pathway for immunotherapy[J]. Hum Vaccin Immunother, 2020, 16(10): 2312-2317. DOI: 10.1080/21645515.2019.1696075.
22.Lee J, Choi JA, Ju HH, et al. Role of MCP-1 and IL-8 in viral anterior uveitis, and contractility and fibrogenic activity of trabecular meshwork cells[J]. Sci Rep, 2021, 11(1): 14950. DOI: 10.1038/s41598-021-94391-2.
23.Sun C, Zhang H, Tang Y, et al. Aqueous inflammation and ischemia-related biomarkers in neovascular glaucoma with stable iris neovascularization[J]. Curr Eye Res, 2020, 45(12): 1504-1513. DOI: 10.1080/02713683.2020.1762226.
24.Ten Berge JC, Fazil Z, van den Born I, et al. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract[J]. Acta Ophthalmol, 2019, 97(2): 185-192. DOI: 10.1080/aos.13899.
25.Sakhnov SN, Kharchenko VV. The diagnostic and prognostication of glaucoma[J]. Klin Lab Diagn, 2018, 63(4): 246-249. DOI: 10.18821/0869-2084-2018-63-4-246-249.
26.Wang Y, Chen S, Liu Y, et al. Inflammatory cytokine profiles in eyes with primary angle-closure glaucoma[J]. Biosci Rep, 2018, 38(6): BSR20181411. DOI: 10.1042/BSR20181411.
27.Ulhaq ZS, Soraya GV, Hasan YTN, et al. Serum IL-6/IL-10 ratio as a biomarker for the diagnosis and severity assessment of primary-open angle glaucoma[J]. Eur J Ophthalmol, 2022, 32(4): 2259-2264. DOI: 10.1177/11206721211037133.
28.张康玉, 蒋正轩, 陶黎明, 等. IL-10 在青光眼引流物 材料植入术后瘢痕组织中的动态表达[J]. 国际眼科杂 志, 2022, 22(4): 549-553. [Zhang KY, Jiang ZX, Tao LM, et al. Study on dynamic expression of IL-10 on scarring after implantation of glaucoma drainage material[J]. International Eye Science, 2022, 22(4): 549-553.] DOI: 10.3980/j.issn.1672-5123.2022.4.04.
29.Keller KE, Yang YF, Sun YY, et al. Analysis of interleukin-20 receptor complexes in trabecular meshwork cells and effects of cytokine signaling in anterior segment perfusion culture[J]. Mol Vis, 2019, 25: 266-282. https://pubmed.ncbi.nlm.nih.gov/31205408/.
30.Lindborg JA, Tran NM, Chenette DM, et al. Optic nerve regeneration screen identifies multiple genes restricting adult neural repair[J]. Cell Rep, 2021, 34(9): 108777. DOI: 10.1016/j.celrep.2021.108777.
31.Zheng M, Zheng Y, Gao M, et al. Expression and clinical value of lncRNA MALAT1 and lncRNA ANRIL in glaucoma patients[J]. Exp Ther Med, 2020, 19(2): 1329-1335. DOI: 10.3892/etm.2019.8345.
32.Sun L, Wang L, Moore BB, et al. IL-17: balancing protective immunity and pathogenesis[J]. J Immunol Res, 2023, 2023: 3360310. DOI: 10.1155/2023/3360310.
33.Rouvier E, Luciani MF, Mattéi MG, et al. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene[J]. J Immunol, 1993, 150(12): 5445-5456. https://pubmed.ncbi.nlm.nih.gov/8390535/.
34.Huangfu L, Li R, Huang Y, et al. The IL-17 family in diseases: from bench to bedside[J]. Signal Transduct Target Ther, 2023, 8(1): 402. DOI: 10.1038/s41392-023-01620-3.
35.Chen J, Liu X, Zhong Y. Interleukin-17A: the key cytokine in neurodegenerative diseases[J]. Front Aging Neurosci, 2020, 12: 566922. DOI: 10.3389.
36.Burgos-Blasco B, Vidal-Villegas B, Saenz-Frances F, et al. Tear and aqueous humour cytokine profile in primary open-angle glaucoma[J]. Acta Ophthalmol, 2020, 98(6): e768-e772. DOI: 10.1111/aos.14374.
37.Ren Y, Qi Y, Su X. Th17 cells in glaucoma patients promote Ig production in IL-17A and IL-21-dependent manner[J]. Clin Exp Pharmacol Physiol, 2019, 46(10): 875-882. DOI: 10.1111/1440-1681.13141.
38.唐晓蕾, 代艳, 丁倩, 等. 房水中IL-17、VEGF、TNF-α水平与先天性白内障摘除术后无晶状体青光眼发生的关系[J]. 中国处方药, 2020, 18(12): 7-9. [Tang XL, Dai Y, Ding Q, et al. The relationship between IL-17, VEGF, TNF-α in aqueous humor and aphakic glaucoma after congenital cataract extraction[J]. Journal of China Prescription Drug, 2020, 18(12): 7-9.] DOI: 10.3969/j.issn.1671-945X.2020.12.005.
39.Liu Z, Fu G, Liu A. The relationship between inflammatory mediator expression in the aqueous humor and secondary glaucoma incidence after silicone oil tamponade[J]. Exp Ther Med, 2017, 14(6): 5833-5836. DOI: 10.3892/etm.2017.5269.
40.Yang J, Zhang M, Song Q, et al. Integrating network pharmacological and experimental models to investigate the therapeutic effects of baicalein in glaucoma[J]. Chin Med, 2021, 16(1): 124. DOI: 10.1186/s13020-021-00537-9.
41.Chen Y, Bounds SE, Ma X, et al. Interleukin-17-mediated protective cytokine signaling against degeneration of the retinal pigment epithelium[J]. Proc Natl Acad Sci USA, 2023, 120(51): e2311647120. DOI: 10.1073/pnas.2311647120.
42.Zhao J, Chen W, Huang X, et al. Serum Th1 and Th17 related cytokines and autoantibodies in patients with Posner-Schlossman syndrome[J]. PLoS One, 2017, 12(4): e0175519. DOI: 10.1371/journal.pone.0175519.
43.Li J, Ang M, Cheung CM, et al. Aqueous cytokine changes associated with Posner-Schlossman syndrome with and without human cytomegalovirus[J]. PLoS One, 2012, 7(9): e44453. DOI: 10.1371/journal.pone.0044453.
44.Fernández-Albarral JA, Salazar JJ, de Hoz R, et al. Retinal molecular changes are associated with neuroinflammation and loss of RGCs in an experimental model of glaucoma[J]. Int J Mol Sci, 2021, 22(4): 2066. DOI: 10.3390/ijms22042066.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20242581
-
Development situation and expert suggestion on "Internet+Traditional Chinese Medicine" in China
Jun. 01, 20242268
-
Analysis of the relationship between home skin care associated factors and disease severity for children with atopic dermatitis
Jun. 01, 20242008
-
Mechanism of ALKBH5 mediated m6A regulation of Galectin-9 in the invasion, migration, and proliferation of endometrial stromal cell
Jun. 01, 20241831
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20241735
-
Analysis of the disease burden of benign prostatic hyperplasia in China, the United States and Germany at 1990 and 2019
Jun. 01, 20241596
-
Risk factors and prediction model construction for poor outcome in asthma combined with severe community-acquired pneumonia in children
Jun. 01, 20241541
-
Relationship and potential mechanisms between gut microbiota and benign prostatic hyperplasia
Jun. 01, 20241417