Metabolic dysfunction-associated fatty liver disease (MASLD) mainly includes simple hepatic steatosis, and on the basis of this, metabolic dysfunction-associated steatohepatitis (MASH) and subsequent liver fibrosis, cirrhosis and hepatocellular carcinoma(HCC). The global prevalence of MASLD is nearly 30%, causing a significant disease burden. Early diagnosis and treatment are important. Liver biopsy remains the gold standard for diagnosing hepatic steatosis in MASLD, but it is costly and carries risks such as internal bleeding and infection, making it unsuitable for large-scale clinical application. With advancements in molecular biology, genomics, and machine learning, an increasing number of non-invasive monitoring methods are being applied in clinical practice, and predictive models based on these non-invasive methods have achieved good clinical outcomes. This paper reviews the recent advances in non-invasive MASLD diagnosis, mainly focusing on imaging and biomarkers.
HomeArticlesVol 34,2024 No.7Detail
Advances in non-invasive diagnosis of metabolic dysfunction-associated fatty liver disease
Published on Jul. 30, 2024Total Views: 1300 timesTotal Downloads: 378 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Younossi ZM, Golabi P, Paik JM, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology, 2023, 77(4): 1335-1347. DOI: 10.1097/hep.0000000000000004.
2.Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature[J]. Hepatology, 2023, 78(6): 1966-1986. DOI: 10.1097/hep.0000000000000520.
3.Hernaez R, Lazo M, Bonekamp S, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a Meta-analysis[J]. Hepatology, 2011, 54(3): 1082-1090. DOI: 10.1002/hep.24452.
4.Ferraioli G, Soares Monteiro LB. Ultrasound-based techniques for the diagnosis of liver steatosis[J]. World J Gastroenterol, 2019, 25(40): 6053-6062. DOI: 10.3748/wjg.v25.i40.6053.
5.Karlas T, Petroff D, Sasso M, et al. Individual patient data Meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis[J]. J Hepatol, 2017, 66(5): 1022-1030. DOI: 10.1016/j.jhep.2016.12.022.
6.Cai C, Song X, Chen X, et al. Transient elastography in alcoholic liver disease and nonalcoholic fatty liver disease: a systemic review and Meta-analysis[J]. Can J Gastroenterol Hepatol, 2021, 2021: 8859338. DOI: 10.1155/2021/8859338.
7.Puigvehí M, Broquetas T, Coll S, et al. Impact of anthropometric features on the applicability and accuracy of FibroScan® (M and XL) in overweight/obese patients[J]. J Gastroenterol Hepatol, 2017, 32(10): 1746-1753. DOI: 10.1111/jgh.13762.
8.Fabrellas N, Hernández R, Graupera I, et al. Prevalence of hepatic steatosis as assessed by controlled attenuation parameter (CAP) in subjects with metabolic risk factors in primary care. A population-based study[J]. PLoS One, 2018, 13(9): e0200656. DOI: 10.1371/journal.pone.0200656.
9.Tang A, Desai A, Hamilton G, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease[J]. Radiology, 2015, 274(2): 416-425. DOI: 10.1148/radiol.14140754.
10.Xia T, Du M, Li H, et al. Association between liver MRI proton density fat fraction and liver disease risk[J]. Radiology, 2023, 309(1): e231007. DOI: 10.1148/radiol.231007.
11.Loomba R, Neuschwander-Tetri BA, Sanyal A, et al. Multicenter validation of association between decline in MRI-PDFF and histologic response in NASH[J]. Hepatology, 2020, 72(4): 1219-1229. DOI: 10.1002/hep.31121.
12.Niehoff JH, Woeltjen MM, Saeed S, et al. Assessment of hepatic steatosis based on virtual non-contrast computed tomography: initial experiences with a photon counting scanner approved for clinical use[J]. Eur J Radiol, 2022, 149: 110185. DOI: 10.1016/j.ejrad.2022.110185.
13.Pickhardt PJ, Blake GM, Graffy PM, et al. Liver steatosis categorization on contrast-enhanced CT using a fully automated deep learning volumetric segmentation tool: evaluation in 1204 healthy adults using unenhanced CT as a reference standard[J]. AJR Am J Roentgenol, 2021, 217(2): 359-367. DOI: 10.2214/ajr.20.24415.
14.Byun J, Lee SS, Sung YS, et al. CT indices for the diagnosis of hepatic steatosis using non-enhanced CT images: development and validation of diagnostic cut-off values in a large cohort with pathological reference standard[J]. Eur Radiol, 2019, 29(8): 4427-4435. DOI: 10.1007/s00330-018-5905-1.
15.Hu N, Yan G, Tang M, et al. CT-based methods for assessment of metabolic dysfunction associated with fatty liver disease[J]. Eur Radiol Exp, 2023, 7(1): 72. DOI: 10.1186/s41747-023-00387-0.
16.Murayama K, Okada M, Tanaka K, et al. Prediction of nonalcoholic fatty liver disease using noninvasive and non-imaging procedures in Japanese health checkup examinees[J]. Diagnostics (Basel), 2021, 11(1): 132. DOI: 10.3390/diagnostics11010132.
17.Mertens J, Weyler J, Dirinck E, et al. Prevalence, risk factors and diagnostic accuracy of non-invasive tests for NAFLD in people with type 1 diabetes[J]. JHEP Rep, 2023, 5(7): 100753. DOI: 10.1016/j.jhepr.2023.100753.
18.Chen J, Mao X, Deng M, et al. Validation of nonalcoholic fatty liver disease (NAFLD) related steatosis indices in metabolic associated fatty liver disease (MAFLD) and comparison of the diagnostic accuracy between NAFLD and MAFLD[J]. Eur J Gastroenterol Hepatol, 2023, 35(4): 394-401. DOI: 10.1097/meg.0000000000002497.
19.Fennoun H, Mansouri SE, Tahiri M, et al. Interest of hepatic steatosis index (HSI) in screening for metabolic steatopathy in patients with type 2 diabetes[J]. Pan Afr Med J, 2020, 37: 270. DOI: 10.11604/pamj.2020.37.270.9087.
20.Poynard T, Peta V, Munteanu M, et al. The diagnostic performance of a simplified blood test (SteatoTest-2) for the prediction of liver steatosis[J]. Eur J Gastroenterol Hepatol, 2019, 31(3): 393-402. DOI: 10.1097/meg. 0000000000001304.
21.Poynard T, Lassailly G, Diaz E, et al. Performance of biomarkers FibroTest, ActiTest, SteatoTest, and NashTest in patients with severe obesity: Meta analysis of individual patient data[J]. PLoS One, 2012, 7(3): e30325. DOI: 10.1371/journal.pone.0030325.
22.Zelber-Sagi S, Webb M, Assy N, et al. Comparison of fatty liver index with noninvasive methods for steatosis detection and quantification[J]. World J Gastroenterol, 2013, 19(1): 57-64. DOI: 10.3748/wjg.v19.i1.57.
23.Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2019, 156(6): 1717-1730. DOI: 10.1053/j.gastro.2019.01.042.
24.Eguchi A, Wree A, Feldstein AE. Biomarkers of liver cell death[J]. J Hepatol, 2014, 60(5): 1063-1074. DOI: 10.1016/j.jhep.2013.12.026.
25.Zhang H, Rios RS, Boursier J, et al. Hepatocyte apoptosis fragment product cytokeratin-18 M30 level and non-alcoholic steatohepatitis risk diagnosis: an international registry study[J]. Chin Med J (Engl), 2023, 136(3): 341-350. DOI: 10.1097/cm9.0000000000002603.
26.Mikolasevic I, Domislovic V, Krznaric-Zrnic I, et al. The accuracy of serum biomarkers in the diagnosis of steatosis, fibrosis, and inflammation in patients with nonalcoholic fatty liver disease in comparison to a liver biopsy[J]. Medicina (Kaunas), 2022, 58(2): 252. DOI: 10.3390/medicina58020252.
27.Alhinai A, Qayyum-Khan A, Zhang X, et al. Non-alcoholic steatohepatitis in liver transplant recipients diagnosed by serum cytokeratin 18 and transient elastography: a prospective study[J]. World J Hepatol, 2021, 13(12): 2179-2791. DOI: 10.4254/wjh.v13.i12.2179.
28.Huang JF, Yeh ML, Huang CF, et al. Cytokeratin-18 and uric acid predicts disease severity in Taiwanese nonalcoholic steatohepatitis patients[J]. PLoS One, 2017, 12(5): e0174394. DOI: 10.1371/journal.pone.0174394.
29.Shen J, Chan HL, Wong GL, et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers[J]. J Hepatol, 2012, 56(6): 1363-1370. DOI: 10.1016/j.jhep.2011.12.025.
30.Feldstein AE, Lopez R, Tamimi TA, et al. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. J Lipid Res, 2010, 51(10): 3046-3054. DOI: 10.1194/jlr.M007096.
31.Zhang Y, He H, Zeng YP, et al. Lipoprotein A, combined with alanine aminotransferase and aspartate aminotransferase, contributes to predicting the occurrence of NASH: a cross-sectional study[J]. Lipids Health Dis, 2020, 19(1): 134. DOI: 10.1186/s12944-020-01310-x.
32.Xin S, Zhan Q, Chen X, et al. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: a systematic review and Meta-analysis[J]. BMC Gastroenterol, 2020, 20(1): 186. DOI: 10.1186/s12876-020-01334-8.
33.Becker PP, Rau M, Schmitt J, et al. Performance of serum microRNAs-122, -192 and-21 as biomarkers in patients with non-alcoholic steatohepatitis[J]. PLoS One, 2015, 10(11): e0142661. DOI: 10.1371/journal.pone.0142661.
34.Li G, Zheng TL, Chi XL, et al. LEARN algorithm: a novel option for predicting non-alcoholic steatohepatitis[J]. Hepatobiliary Surg Nutr, 2023, 12(4): 507-522. DOI: 10.21037/hbsn-21-523.
35.Suárez M, Martínez R, Torres AM, et al. A machine learning method to identify the risk factors for liver fibrosis progression in nonalcoholic steatohepatitis[J]. Dig Dis Sci, 2023, 68(9): 3801-3809. DOI: 10.1007/s10620-023-08031-y.
36.Zhang X, Wong GL, Wong VW. Application of transient elastography in nonalcoholic fatty liver disease[J]. Clin Mol Hepatol, 2020, 26(2): 128-141. DOI: 10.3350/cmh. 2019.0001n.
37.Garg H, Aggarwal S, Shalimar, et al. Utility of transient elastography (fibroscan) and impact of bariatric surgery on nonalcoholic fatty liver disease (NAFLD) in morbidly obese patients[J]. Surg Obes Relat Dis, 2018, 14(1): 81-91. DOI: 10.1016/j.soard.2017.09.005.
38.Vuppalanchi R, Siddiqui MS, Van Natta ML, et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease[J]. Hepatology, 2018, 67(1): 134-144. DOI: 10.1002/hep.29489.
39.Piazzolla VA, Mangia A. Noninvasive diagnosis of NAFLD and NASH[J]. Cells, 2020, 9(4): 105. DOI: 10.3390/cells9041005.
40.Singh S, Venkatesh SK, Loomba R, et al. Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease: a diagnostic accuracy systematic review and individual participant data pooled analysis[J]. Eur Radiol, 2016, 26(5): 1431-1440. DOI: 10.1007/s00330-015-3949-z.
41.Liang JX, Ampuero J, Niu H, et al. An individual patient data Meta-analysis to determine cut-offs for and confounders of NAFLD-fibrosis staging with magnetic resonance elastography[J]. J Hepatol, 2023, 79(3): 592-604. DOI:10.1016/j.jhep.2023.04.025.
42.Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases[J]. Hepatology, 2018, 67(1): 328-357. DOI: 10.1002/hep.29367.
43.Lee MS, Bae JM, Joo SK, et al. Prospective comparison among transient elastography, supersonic shear imaging, and ARFI imaging for predicting fibrosis in nonalcoholic fatty liver disease[J]. PLoS One, 2017, 12(11): e0188321. DOI:10.1371/journal.pone.0188321.
44.da Silva Juniro RG, de Miranda MLQ, de Araújo Caldeira Brant PE, et al. Acoustic radiation force impulse elastography and liver fibrosis risk scores in severe obesity[J]. Arch Endocrinol Metab, 2021, 65(6): 730-738. DOI:10.20945/2359-3997000000397.
45.Kjaergaard M, Lindvig KP, Thorhauge KH, et al. Using the ELF test, FIB-4 and NAFLD fibrosis score to screen the population for liver disease[J]. J Hepatol, 2023, 79(2): 277-286. DOI: 10.1016/j.jhep.2023.04.002.
46.Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD[J]. Hepatology, 2007, 45(4): 846-854. DOI: 10.1002/hep.21496.
47.Park H, Yoon EL, Kim M, et al. Diagnostic performance of the fibrosis-4 index and the NAFLD fibrosis score for screening at-risk individuals in a health check-up setting[J]. Hepatol Commun, 2023, 7(10): e0249. DOI:10.1097/hc9.0000000000000249.
48.Kiyoaki I, Sumida Y, Nakade Y, et al. Mac-2 binding protein glycosylation isomer, the FIB-4 index, and a combination of the two as predictors of non-alcoholic steatohepatitis[J]. PLoS One, 2022, 17(11): e0277380. DOI: 10.1371/journal.pone.0277380.
49.Seko Y, Takahashi H, Toyoda H, et al. Diagnostic accuracy of enhanced liver fibrosis test for nonalcoholic steatohepatitis-related fibrosis: multicenter study[J]. Hepatol Res, 2023, 53(4): 312-321. DOI: 10.1111/hepr.13871.
50.Younossi ZM, Felix S, Jeffers T, et al. Performance of the enhanced liver fibrosis test to estimate advanced fibrosis among patients with nonalcoholic fatty liver disease[J]. JAMA Netw Open, 2021, 4(9): e2123923. DOI:10.1001/jamanetworkopen.2021.23923.
51.Lee HW, Park SY, Kim SU, et al. Discrimination of nonalcoholic steatohepatitis using transient elastography in patients with nonalcoholic fatty liver disease[J]. PLoS One, 2016, 11(6): e0157358. DOI: 10.1371/journal.pone.0157358.
52.Siddiqui MS, Yamada G, Vuppalanchi R, et al. Diagnostic accuracy of noninvasive fibrosis models to detect change in fibrosis stage[J]. Clin Gastroenterol Hepatol, 2019, 17(9): 1877-1885. e5. DOI: 10.1016/j.cgh.2018.12.031.
53.Arai T, Takahashi H, Seko Y, et al. Accuracy of the enhanced liver fibrosis test in patients with type 2 diabetes mellitus and its clinical implications[J]. Clin Gastroenterol Hepatol, 2024, 22(4): 789-797. e8. DOI: 10.1016/j.cgh.2023.11.022.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20243013
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20242498
-
An analysis of disease burden and risk factors of chronic kidney disease in China from 1990 to 2021
Sep. 30, 20242397
-
Construction and clinical teaching application of virtual patient system: based on artificial intelligence LLM technology
Jul. 30, 20241860
-
Characteristics of lower limb surface electromyography in patients with knee osteoarthritis and progress in their exercise rehabilitation
Aug. 31, 20241852
-
Analysis of the disease burden of neonatal encephalopathy due to birth asphyxia and trauma in China from 1990 to 2019
Aug. 31, 20241736
-
Research progress on the role and treatment of CD24 in the tumor microenvironment
Aug. 31, 20241662
-
Risk factors and prediction model construction for malnutrition in long-term bedridden elderly patients
Aug. 31, 20241632