Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress on the mechanism of long non-coding RNA LINC00641 in the development of malignant tumors

Published on Jan. 31, 2024Total Views: 666 timesTotal Downloads: 245 timesDownloadMobile

Author: GUO Mengmeng 1, 2 MING Daojing 1, 2 REN Yiming 2, 3 QIAN Xinhang 1, 2 YANG Shisong 1, 2 WANG Congcong 2, 3 LU Peiwen 1, 2 ZHANG Jinhui 2, 3 YUAN Shuai 2 XI Shu 2, 4 ZENG Xiantao 1, 2, 3, 4

Affiliation: 1. Department of Urology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China 2. Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 3. Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China 4. Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: Long non-coding RNAs LINC00641 Malignant tumor

DOI: 10.12173/j.issn.1004-5511.202311035

Reference: Guo MM, Ming DJ, Ren YM, Qian XX, Yang SS, Wang CC, Lu PW, Zhang JH, Yuan S, Xi S, Zeng XT. Research progress on the mechanism of long non-coding RNA LINC00641 in the development of malignant tumors[J]. Yixue Xinzhi Zazhi, 2024, 34(1): 88-98. DOI: 10.12173/j.issn.1004-5511.202311035.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Long non-coding RNAs (lncRNAs) are a class of functional RNA that is not translated into proteins, with more than 200 nucleotides in length. LncRNAs are involved in the regulation of gene expression at the  transcriptional, and post-transcriptional levels. In recent years, more and more evidence has shown that lncRNAs regulate the biological processes of tumor proliferation, apoptosis, invasion and metastasis by various signaling pathways. LINC00641, located on human chromosome 14q11.2, is differentially expressed in a variety of tumors tissues and is associated with prognosis of tumor. Changes in the expression of LINC00641 can lead to alterations in various biological behaviors of tumor cells. Therefore, LINC00641 could be a new biomarker and potential target in clinical practice. We reviewed the biological function, molecular mechanism and clinical significance of LINC00641 in various human malignant tumors.

Full-text
Please download the PDF version to read the full text: download
References

1.Tiffon C. The impact of nutrition and environmental epigenetics on human health and disease [J]. International Journal of Molecular Sciences, 2018, 19(11). DOI: 10.3390/ijms19113425.

2.Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013.

3.Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology [J]. Cell, 2019, 179(5): 1033-1055. DOI: 10.1016/j.cell.2019.10.017.

4.ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414): 57-74. DOI: 10.1038/nature11247.

5.Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells[J]. Nature, 2012, 489(7414): 101-108. DOI: 10.1038/nature11233.

6.Luo S, Lu JY, Liu L, et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells[J]. Cell stem cell, 2016, 18(5): 637-652. DOI: 10.1016/j.stem.2016.01.024.

7.Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease[J]. Cell, 2013, 152(6): 1298-1307. DOI: 10.1016/j.cell.2013.02.012.

8.Li Z, Hong S, Liu Z. lncRNA LINC00641 predicts prognosis and inhibits bladder cancer progression through miR-197-3p/KLF10/PTEN/PI3K/AKT cascade[J]. Biochem Biophys Res Commun, 2018, 503(3): 1825-1829. DOI: 10.1016/j.bbrc.2018.07.120.

9.Han X, Zhang S. Role of long non-coding RNA LINC00641 in cancer[J]. Front Oncol, 2021, 11: 829137. DOI: 10.3389/fonc.2021.829137.

10.Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.

11.Li Y, Yin Z, Fan J, et al. The roles of exosomal miRNAs and lncRNAs in lung diseases[J]. Signal Transd Targeted Ther, 2019, 4: 47. DOI: 10.1038/s41392-019-0080-7.

12.Dong R, Liu J, Sun W, et al. Comprehensive analysis of aberrantly expressed profiles of lncRNAs and miRNAs with associated ceRNA network in lung adenocarcinoma and lung squamous cell carcinoma[J]. Pathol Oncol Res, 2020, 26(3): 1935-1945. DOI: 10.1007/s12253-019-00780-4.

13.Li Y, Zhao L, Zhao P, et al. Long non-coding RNA LINC00641 suppresses non-small-cell lung cancer by sponging miR-424-5p to upregulate PLSCR4[J]. Cancer Biomark, 2019, 26(1): 79-91. DOI: 10.3233/cbm-190142.

14.Xi S, Ming DJ, Zhang JH, et al. Downregulation of N6-methyladenosine-modified LINC00641 promotes EMT, but provides a ferroptotic vulnerability in lung cancer[J]. Cell Death Dis, 2023, 14(6): 359. DOI: 10.1038/s41419-023-05880-3.

15.Wang H, Wang W, Fan S. Emerging roles of lncRNA in nasopharyngeal carcinoma and therapeutic opportunities[J]. Int J Biol Sci, 2022, 18(7): 2714-2728. DOI: 10.7150/ijbs.70292.

16.Ren D, Lu J, Han X, et al. LINC00641 contributes to nasopharyngeal carcinoma cell malignancy through FOXD1 upregulation at the post-transcriptional level[J]. Biochem Cell Biol, 2021, 99(6): 750-758. DOI: 10.1139/bcb-2020-0295.

17.李路遥, 郑忠立, 甘信利, 等. 1990年与2017年中国8种消化道疾病的疾病负担分析[J]. 医学新知,  2021, 31(4): 249-256. [Li LY, Zheng ZL, Gan XL, et al. Disease burden analysis of 8 digestive tract diseases in China in 1990 and 2017[J]. Yixue Xinzhi Zazhi, 31(4): 249-256.] DOI: 10.12173/j.issn.1004-5511.202012009.

18.林胜, 郭琴, 王华国, 等. CA72-4联合AFP、CEA、CA19-9检测在胃肠道疾病中的临床应用价值研究[J]. 国际检验医学杂志. 2020, 41(7): 807-811. [Lin S, Guo Q, Wang HG, et al. CA72-4 combined with AFP, CEA and CA19-9 detection in the clinical application of gastrointestinal diseases[J]. International Journal of Laboratory Medicine, 2020, 41(7): 807-811.]DOI: 10.3969/j.issn.1673-4130.2020.07.010.

19.Fitzmaurice C, Dicker D, Pain A, et al. The global burden of cancer 2013[J]. JAMA Oncol, 2015, 1(4): 505-527. DOI: 10.1001/jamaoncol.2015.0735.

20.Yuan L, Xu ZY, Ruan SM, et al. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance[J]. Molecular Cancer, 2020, 19(1): 96. DOI: 10.1186/s12943-020-01219-0.

21.Zhang X, Xie K, Zhou H, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance[J]. Molecular Cancer, 2020, 19(1): 47. DOI: 10.1186/s12943-020-01171-z.

22.Hang Q, Lu J, Zuo L, et al. Linc00641 promotes the progression of gastric carcinoma by modulating the miR-429/Notch-1 axis[J]. Aging, 2021, 13(6): 8497-8509. DOI: 10.18632/aging.202661.

23.Hu Y, Su Y, Lei X, et al. LINC00641/miR-582-5p mediate oxaliplatin resistance by activating autophagy in gastric adenocarcinoma [J]. Scientific Reports, 2020, 10(1): 14981. DOI: 10.1038/s41598-020-70913-2.

24.Wang L, Cho KB, Li Y, et al. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer[J]. Int J Mol Sci, 2019, 20(22): 5758. DOI: 10.3390/ijms20225758.

25.Xia F, Yan Y, Shen C. A Prognostic pyroptosis-related lncrnas risk model correlates with the immune microenvironment in colon adenocarcinoma[J]. Front Cell Dev Biol, 2021, 9: 811734. DOI: 10.3389/fcell.2021.811734.

26.Xue D, Xue YF, Zhang LJ, et al. LINC00641 induces the malignant progression of colorectal carcinoma through the miRNA-424-5p/PLSCR4 feedback loop[J]. European Review for Medical and Pharmacological Sciences, 2021, 25(2): 749-57. DOI: 10.26355/eurrev_202101_24636.

27.Hong Z, Pan J, Chen M, et al. Long intergenic noncoding RNA 00641 promotes growth and invasion of colorectal cancer through regulating mir-450b-5p/golph3 axis[J]. J Oncol, 2022, 2022: 8259135. DOI: 10.1155/2022/8259135.

28.Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma[J]. Nat Rev Dis Primers, 2017, 3: 17009. DOI: 10.1038/nrdp.2017.9.

29.Zhang J, Jin S, Xiao W, et al. Long noncoding RNA LINC00641 promotes renal cell carcinoma progression via sponging microRNA-340-5p[J]. Cancer Cell Int, 2021, 21(1): 210. DOI: 10.1186/s12935-021-01895-y.

30.Lenis AT, Lec PM, Chamie K, et al. Bladder cancer: a review[J]. JAMA, 2020, 324(19): 1980-1991. DOI: 10.1001/jama.2020.17598.

31.Li Y, Li G, Guo X, et al. Non-coding RNA in bladder cancer[J]. Cancer letters, 2020, 485: 38-44. DOI: 10.1016/j.canlet.2020.04.023.

32.Attard G, Parker C, Eeles RA, et al. Prostate cancer[J]. Lancet, 2016, 387(10013): 70-82. DOI: 10.1016/s0140-6736(14)61947-4.

33.Hammerer PG, Kattan MW, Mottet N, et al. Using prostate-specific antigen screening and nomograms to assess risk and predict outcomes in the management of prostate cancer[J]. BJU Int, 2006, 98(1): 11-19. DOI: 10.1111/j.1464-410X.2006.06177.x.

34.Groskopf J, Aubin SM, Deras IL, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer [J]. Clinical Chemistry, 2006, 52(6): 1089-1095. DOI: 10.1373/clinchem.2005.063289.

35.Huang H, Tang Y, Ye X, et al. The influence of lncRNAs on the prognosis of prostate cancer based on TCGA database[J]. Transl Androl Urol, 2021, 10(3): 1302-1313. DOI: 10.21037/tau-21-154.

36.Liu WH, Lu JJ, Yu RK, et al. LINC00641 regulates prostate cancer cell growth and apoptosis via the miR-365a-3p/VGLL4 axis [J]. Eur Rev Med Pharmacol Sci, 2021, 25(1): 108-115. DOI: 10.26355/eurrev_202101_24354.

37.Sajjadi RS, Modarressi MH, Tabatabaiefar MA. JPX and LINC00641 ncRNAs expression in prostate tissue: a case-control study[J]. Research in Pharmaceutical Sciences, 2021, 16(5): 493-504. DOI: 10.4103/1735-5362.323916.

38.Petry KU. HPV and cervical cancer[J]. Scand J Clin Lab Invest Suppl, 2014, 244: 59-62. DOI: 10.3109/00365513.2014.936683.

39.Herzog TJ. New approaches for the management of cervical cancer[J]. Gynecol Oncol, 2003, 90(3 Pt 2): S22-27. DOI: 10.1016/s0090-8258(03)00466-9.

40.Zhang Y, Yu R, Li L. LINC00641 hinders the progression of cervical cancer by targeting miR-378a-3p/CPEB3[J]. The Journal of Gene Medicine, 2020, 22(9): e3212. DOI: 10.1002/jgm.3212.

41.Li Y, Lv M, Wang J, et al. LINC00641 inhibits the proliferation and invasion of ovarian cancer cells by targeting miR-320a[J]. Translational Cancer Research, 2021, 10(11): 4894-4904. DOI: 10.21037/tcr-21-2314.

42.Liang Y, Zhang H, Song X, et al. Metastatic heterogeneity of breast cancer: molecular mechanism and potential therapeutic targets[J]. Seminars in Cancer Biology, 2020, 60: 14-27. DOI: 10.1016/j.semcancer.2019.08.012.

43.Mao Q, Lv M, Li L, et al. Long intergenic noncoding RNA 00641 inhibits breast cancer cell proliferation, migration, and invasion by sponging miR-194-5p[J]. J Cell Physiol, 2020, 235(3): 2668-2675. DOI: 10.1002/jcp.29170.

44.Ostrom QT, Patil N, Cioffi G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017[J]. Neuro-oncology, 2020, 22(12 Suppl 2): iv1-96. DOI: 10.1093/neuonc/noaa200.

45.Zhang C, Liu H, Xu P, et al. Identification and validation of a five-lncRNA prognostic signature related to Glioma using bioinformatics analysis [J]. BMC Cancer, 2021, 21(1): 251. DOI: 10.1186/s12885-021-07972-9.

46.Tao C, Luo H, Chen L, et al. Identification of an epithelial-mesenchymal transition related long non-coding RNA (lncRNA) signature in Glioma [J]. Bioengineered, 2021, 12(1): 4016-4031. DOI: 10.1080/21655979.2021.1951927.

47.Chen F, Peng X, Teng Z, et al. Identification of prognostic lncRNAs subtypes predicts prognosis and immune microenvironment for glioma[J]. Evid Based Complement Alternat Med, 2022: 3709823. DOI: 10.1155/2022/3709823.

48.Yang J, Yu D, Liu X, et al. LINC00641/miR-4262/NRGN axis confines cell proliferation in glioma[J]. Cancer Biol Ther, 2020, 21(8): 758-766. DOI: 10.1080/15384047.2020.1776581.

49.Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.

50.Fedele M, Cerchia L, Pegoraro S, et al. Proneural-mesenchymal transition: phenotypic plasticity to acquire multitherapy resistance in glioblastoma[J]. Int J Mol Sci, 2019, 20(11): 2746. DOI: 10.3390/ijms20112746.

51.Liang R, Zhi Y, Zheng G, et al. Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, Cox regression, and L1-LASSO penalization[J]. Onco Targets Ther, 2019, 12: 157-168. DOI: 10.2147/ott.S171957.

52.Amer RG, Ezz El Arab LR, Abd El Ghany D, et al. Prognostic utility of lncRNAs (LINC00565 and LINC00641) as molecular markers in glioblastoma multiforme(GBM)[J]. J Neurooncol, 2022, 158(3): 435-444. DOI: 10.1007/s11060-022-04030-7.

53.Anderson WJ, Doyle LA. Updates from the 2020 World Health Organization classification of soft tissue and bone tumours[J]. Histopathology, 2021, 78(5): 644-657. DOI: 10.1111/his.14265.

54.Beird HC, Bielack SS, Flanagan AM, et al. Osteosarcoma[J]. Nature Reviews Disease Primers, 2022, 8(1): 77. DOI: 10.1038/s41572-022-00409-y.

55.Tang J, Zhu Z, Dong S, et al. Long non-coding RNA long intergenic non-coding 00641 mediates cell progression with stimulating cisplatin-resistance in osteosarcoma cells via microRNA-320d/myeloid cell leukemia-1 axis[J]. Bioengineered, 2022, 13(3): 7238-7252. DOI: 10.1080/21655979.2022.2045090.

56.De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update[J]. Blood Cancer Journal, 2016, 6(7): e441. DOI: 10.1038/bcj.2016.50.

57.Wang J, Liu ZH, Yu LJ. Long non-coding RNA LINC00641 promotes cell growth and migration through modulating miR-378a/ZBTB20 axis in acute myeloid leukemia[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(17): 7498-509. DOI: 10.26355/eurrev_201909_18864.

58.Roman BR, Morris LG, Davies L. The thyroid cancer epidemic, 2017 perspective[J]. Curr Opin Endocrinol Diabetes Obes, 2017, 24(5): 332-336. DOI: 10.1097/med.0000000000000359.

59.Cao J, Zhang M, Zhang L, et al. Non-coding RNA in thyroid cancer - functions and mechanisms[J]. Cancer letters, 2021, 496: 117-126. DOI: 10.1016/j.canlet.2020.08.021.

60.Rao Y, Liu H, Yan X, et al. In Silico analysis identifies differently expressed lncRNAs as novel biomarkers for the prognosis of thyroid cancer [J]. Comput Math Methods Med, 2020, 2020: 3651051. DOI: 10.1155/2020/3651051.

61.Motaparthi K, Kapil JP, Velazquez EF. Cutaneous squamous cell carcinoma: review of the eighth edition of the American joint committee on cancer staging guidelines, prognostic factors, and histopathologic variants[J]. Adv Anat Pathol, 2017, 24(4): 171-194. DOI: 10.1097/pap.0000000000000157.

62.Liu W, Liu X. LINC00641 Inhibits the development of cutaneous squamous cell carcinoma by downregulating miR-424 in A431 cells[J]. Cancer Biother Radiopharm, 2021. DOI: 10.1089/cbr.2020.4325.

63.Hackshaw A, Clarke CA, Hartman AR. New genomic technologies for multi-cancer early detection: rethinking the scope of cancer screening[J]. Cancer cell, 2022, 40(2): 109-113. DOI: 10.1016/j.ccell.2022.01.012.

64.Gilson P, Merlin JL, Harlé A. Deciphering tumour heterogeneity: from tissue to liquid biopsy[J]. Cancers, 2022, 14(6): 1384. DOI: 10.3390/cancers14061384.

65.Li M, Zeringer E, Barta T, et al. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1652): 20130502. DOI: 10.1098/rstb.2013.0502.

66.Li X, Yang L. Urinary exosomes: emerging therapy delivery tools and biomarkers for urinary system diseases[J]. Biomed Pharmacother, 2022, 150: 113055. DOI: 10.1016/j.biopha.2022.113055.

67.Han Y, Jia L, Zheng Y, et al. Salivary exosomes: emerging roles in systemic disease[J]. Int J Biol Sci, 2018, 14(6): 633-643. DOI: 10.7150/ijbs.25018.

68.Yu W, Hurley J, Roberts D, et al. Exosome-based liquid biopsies in cancer: opportunities and challenges[J]. Ann Oncol, 2021, 32(4): 466-77. DOI: 10.1016/j.annonc.2021.01.074.

69.Zhou B, Ji B, Shen C, et al. EVLncRNAs 3.0: an updated comprehensive database for manually curated functional long non-coding RNAs validated by low-throughput experiments[J]. Nucleic acids research, 2024, 52(D1): 98-106. DOI: 10.1093/nar/gkad1057.

70.Pernigoni N, Zagato E, Calcinotto A, et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis[J]. Science, 2021, 374(6564): 216-224. DOI: 10.1126/science.abf8403.

71.Jiang N, Xie F, Chen L, et al. The effect of TLR4 on the growth and local inflammatory microenvironment of HPV-related cervical cancer in vivo[J]. Infectious Agents and Cancer, 2020, 15: 12. DOI: 10.1186/s13027-020-0279-9.

72.Shirahama S, Miki A, Kaburaki T, et al. Long non-coding RNAs involved in pathogenic infection[J]. Frontiers in Genetics, 2020, 11: 454. DOI: 10.3389/fgene.2020.00454.

73.Wang J, Liu Z, Xu Y, et al. Enterobacterial LPS-inducible LINC00152 is regulated by histone lactylation and promotes cancer cells invasion and migration[J]. Front Cell Infect Microbiol, 2022, 12: 913815. DOI: 10.3389/fcimb.2022.913815.

74.Liang W, Zou Y, Qin F, et al. sTLR4/MD-2 complex inhibits colorectal cancer migration and invasiveness in vitro and in vivo by lncRNA H19 down-regulation[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49(11): 1035-1041. DOI: 10.1093/abbs/gmx105.

75.Ye Y, Xu Y, Lai Y, et al. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization[J]. Journal of Cellular Biochemistry, 2018, 119(3): 2951-2963. DOI: 10.1002/jcb.26509.

76.Peng L, Pan B, Zhang X, et al. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression[J]. Cell Biology and Toxicology, 2022, 38(6): 1159-1173. DOI: 10.1007/s10565-022-09718-0.

77.Huang M, Wang H, Hu X, et al. lncRNA MALAT1 binds chromatin remodeling subunit BRG1 to epigenetically promote inflammation-related hepatocellular carcinoma progression[J]. Oncoimmunology, 2019, 8(1): e1518628. DOI: 10.1080/2162402x.2018.1518628.

78.Wang N, Meng X, Liu Y, et al. LPS promote osteosarcoma invasion and migration through TLR4/HOTAIR[J]. Gene, 2019, 680: 1-8. DOI: 10.1016/j.gene.2018.09.031.

79.Li Z, Xu L, Liu Y, et al. lncRNA MALAT1 promotes relapse of breast cancer patients with postoperative fever[J]. Am J Transl Res, 2018, 10(10): 3186-3197. https://pubmed.ncbi.nlm.nih.gov/30416660/.

80.Liu M, Liu Q, Fan S, et al. lncRNA LTSCCAT promotes tongue squamous cell carcinoma metastasis via targeting the miR-103a-2-5p/SMYD3/TWIST1 axis[J]. Cell Death Dis, 2021, 12(2): 144. DOI: 10.1038/s41419-021-03415-2.

81.Zhou W, Chen X, Hu Q, et al. Galectin-3 activates TLR4/NF-κB signaling to promote lung adenocarcinoma cell proliferation through activating lncRNA-NEAT1 expression[J]. BMC Cancer, 2018, 18(1): 580. DOI: 10.1186/s12885-018-4461-z.

82.Gong Q, Li H, Song J, et al. lncRNA LINC01569 promotes M2 macrophage polarization to accelerate hypopharyngeal carcinoma progression through the miR-193a-5p/FADS1 signaling axis[J]. J Cancer, 2023, 14(9): 1673-1688. DOI: 10.7150/jca.83466.