Cancer-associated fibroblasts (CAFs) are key components of the tumor microenvironment (TME) and play an essential role in the development of tumors. It is suggested that CAFs influence tumor cell proliferation, invasion and migration as well as regulate tumor cell resistance to chemotherapeutic agents through the secretion of cytokines, chemokines, growth factors and extracellular matrix proteins. And they also enhance the immune escape ability of tumors by interacting with tumor-associated immune cells. This article comprehensively expounds how the biomarkers and subtypes of CAFs can promote the development of malignant tumors by affecting the immune escape of tumor cells and TME, and discusses the mechanism and potential treatment strategies of CAFs in malignant tumors.
HomeArticlesVol 35,2025 No.5Detail
Research progress on cancer-associated fibroblasts in malignant tumors
Published on May. 25, 2025Total Views: 7247 timesTotal Downloads: 1072 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Buckley CD. Fibroblast cells reveal their ancestry[J]. Nature, 2021, 593(7860): 511-512. DOI: 10.1038/d41586-021-01204-7.
2.Wu F, Yang J, Liu J, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 218. DOI: 10.1038/s41392-021-00641-0.
3.Yang D, Liu J, Qian H, et al. Cancer-associated fibroblasts: from basic science to anticancer therapy[J]. Exp Mol Med, 2023, 55(7): 1322-1332. DOI: 10.1038/s12276-023-01013-0.
4.Ping Q, Yan R, Cheng X, et al. Cancer-associated fibroblasts: overview, progress, challenges, and directions[J]. Cancer Gene Ther, 2021, 28(9): 984-999. DOI: 10.1038/s41417-021-00318-4.
5.Zeng W, Xiong L, Wu W, et al. CCL18 signaling from tumor-associated macrophages activates fibroblasts to adopt a chemoresistance-inducing phenotype[J]. Oncogene, 2023, 42(3): 224-237. DOI: 10.1038/s41388-022-02540-2.
6.Chen PY, Wei WF, Wu HZ, et al. Cancer-associated fibroblast heterogeneity: a factor that cannot be ignored in immune microenvironment remodeling[J]. Front Immunol, 2021, 12: 671595. DOI: 10.3389/fimmu.2021.671595.
7.LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact[J]. Dis Model Mech, 2018, 11(4): dmm029447. DOI: 10.1242/dmm.029447.
8.Jia W, Liang S, Cheng B, et al. The role of cancer-associated fibroblasts in hepatocellular carcinoma and the value of traditional Chinese medicine treatment[J]. Front Oncol, 2021, 11: 763519. DOI: 10.3389/fonc.2021.763519.
9.Rimal R, Desai P, Daware R, et al. Cancer-associated fibroblasts: origin, function, imaging, and therapeutic targeting[J]. Adv Drug Deliv Rev, 2022, 189: 114504. DOI: 10.1016/j.addr.2022.114504.
10.Han C, Liu T, Yin R. Biomarkers for cancer-associated fibroblasts[J]. Biomark Res, 2020, 8(1): 64. DOI: 10.1186/s40364-020-00245-w.
11.Joshi RS, Kanugula SS, Sudhir S, et al. The role of cancer-associated fibroblasts in tumor progression[J]. Cancers (Basel), 2021, 13(6): 1399. DOI: 10.3390/cancers13061399.
12.Yu S, Wang S, Wang X, et al. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis[J]. Cancer Cell Int, 2024, 24(1): 335. DOI: 10.1186/s12935-024-03518-8.
13.Hu G, Huang L, Zhong K, et al. PDGFR-β+ fibroblasts deteriorate survival in human solid tumors: a Meta-analysis[J]. Aging (Albany NY), 2021, 13(10): 13693-13707. DOI: 10.18632/aging.202952.
14.Lu S, Gan L, Lu T, et al. Endosialin in cancer: expression patterns, mechanistic insights, and therapeutic approaches[J]. Theranostics, 2024, 14(1): 379-391. DOI: 10.7150/thno.89495.
15.Pan J, Ma Z, Liu B, et al. Identification of cancer-associated fibroblasts subtypes in prostate cancer[J]. Front Immunol, 2023, 14: 1133160. DOI: 10.3389/fimmu.2023.1133160.
16.Tsoumakidou M. The advent of immune stimulating CAFs in cancer[J]. Nat Rev Cancer, 2023, 23(4): 258-269. DOI: 10.1038/s41568-023-00549-7.
17.Menezes S, Okail MH, Jalil SMA, et al. Cancer-associated fibroblasts in pancreatic cancer: new subtypes, new markers, new targets[J]. J Pathol, 2022, 257(4): 526-544. DOI: 10.1002/path.5926.
18.Huang J, Tsang WY, Li ZH, et al. The origin, differentiation, and functions of cancer-associated fibroblasts in gastrointestinal cancer[J]. Cell Mol Gastroenterol Hepatol, 2023, 16(4): 503-511. DOI: 10.1016/j.jcmgh.2023.07.001.
19.Asif PJ, Longobardi C, Hahne M, et al. The role of cancer-associated fibroblasts in cancer invasion and metastasis[J]. Cancers (Basel), 2021, 13(18): 4720. DOI: 10.3390/cancers13184720.
20.Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts[J]. Nat Rev Clin Oncol, 2021, 18(12): 792-804. DOI: 10.1038/s41571-021-00546-5.
21.Zhang C, Fei Y, Wang H, et al. CAFs orchestrates tumor immune microenvironment-a new target in cancer therapy?[J]. Front Pharmacol, 2023, 14: 1113378. DOI: 10.3389/fphar.2023.1113378.
22.Guo X, Chen M, Cao L, et al. Cancer-associated fibroblasts promote migration and invasion of non-small cell lung cancer cells via miR-101-3p mediated VEGFA secretion and AKT/eNOS pathway[J]. Front Cell Dev Biol, 2021, 9: 764151. DOI: 10.3389/fcell.2021.764151.
23.Choi SY, Sung R, Lee SJ, et al. Podoplanin, α-smooth muscle actin or S100A4 expressing cancer-associated fibroblasts are associated with different prognosis in colorectal cancers[J]. J Korean Med Sci, 2013, 28(9): 1293-1301. DOI: 10.3346/jkms.2013.28.9.1293.
24.Gunaydin G. CAFs interacting with TAMs in tumor microenvironment to enhance tumorigenesis and immune evasion[J]. Front Oncol, 2021, 11: 668349. DOI: 10.3389/fonc.2021.668349.
25.Nishiwaki N, Noma K, Ohara T, et al. Overcoming cancer-associated fibroblast-induced immunosuppression by anti-interleukin-6 receptor antibody[J]. Cancer Immunol Immunother, 2023, 72(7): 2029-2044. DOI: 10.1007/s00262-023-03378-7.
26.Terme M, Pernot S, Marcheteau E, et al. VEGF-a-induced treg proliferation, a novel mechanism of tumor immune escape in colorectal cancer: effects of anti-VEGF/VEGFR therapies[J]. Ann Oncol, 2012, 23, Suppl 9: ix75. DOI: 10.1016/S0923-7534(20)32805-2.
27.Hilmi M, Nicolle R, Bousquet C, et al. Cancer-associated fibroblasts: accomplices in the tumor immune evasion[J]. Cancers (Basel), 2020, 12(10): 2969. DOI: 10.3390/cancers12102969.
28.Lee H, Hwang M, Jang S, et al. Immune regulatory function of cancer- associated fibroblasts in non-small cell lung cancer[J]. Tuberc Respir Dis (Seoul), 2023, 86(4): 304-318. DOI: 10.4046/trd.2022.0129.
29.Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Molecular Cancer, 2021, 20(1): 131. DOI: 10.1186/s12943-021-01428-1.
30.Xu Y, Li W, Lin S, et al. Fibroblast diversity and plasticity in the tumor microenvironment: roles in immunity and relevant therapies[J]. Cell Commun Signal, 2023, 21(1): 234. DOI: 10.1186/s12964-023-01204-2.
31.Naito Y, Yoshioka Y, Ochiya T. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles[J]. Cancer Cell Int, 2022, 22(1): 367. DOI: 10.1186/s12935-022-02784-8.
32.Linares J, Marín-Jiménez JA, Badia-Ramentol J, et al. Determinants and functions of CAFs secretome during cancer progression and therapy[J]. Front Cell Dev Biol, 2021, 8: 621070. DOI: 10.3389/fcell.2020.621070.
33.Feng B, Wu J, Shen B, et al. Cancer-associated fibroblasts and resistance to anticancer therapies: status, mechanisms, and countermeasures[J]. Cancer Cell Int, 2022, 22(1): 166. DOI: 10.1186/s12935-022-02599-7.
34.Pei L, Liu Y, Liu L, et al. Roles of cancer-associated fibroblasts (CAFs) in anti-PD-1/PD-L1 immunotherapy for solid cancers[J]. Mol Cancer, 2023, 22(1): 29. DOI: 10.1186/s12943-023-01731-z.
35.Peng Z, Tong Z, Ren Z, et al. Cancer-associated fibroblasts and its derived exosomes: a new perspective for reshaping the tumor microenvironment[J]. Mol Med, 2023, 29(1): 66. DOI: 10.1186/s10020-023-00665-y.
36.Zhang Y, Lv N, Li M, et al. Cancer-associated fibroblasts: tumor defenders in radiation therapy[J]. Cell Death Dis, 2023, 14(8): 541. DOI: 10.1038/s41419-023-06060-z.
37.Bu L, Baba H, Yoshida N, et al. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment[J]. Oncogene, 2019, 38(25): 4887-4901. DOI: 10.1038/s41388-019-0765-y.
38.Peiffer R, Boumahd Y, Gullo C, et al. Cancer-associated fibroblast diversity shapes tumor metabolism in pancreatic cancer[J]. Cancers, 2023, 15(1): 61. DOI: 10.3390/cancers15010061.
39.Yang X, Li Y, Zou L, et al. Role of exosomes in crosstalk between cancer-associated fibroblasts and cancer cells[J]. Front Oncol, 2019, 9: 356. DOI: 10.3389/fonc.2019.00356.
40.Peng L, Wang D, Han Y, et al. Emerging role of cancer-associated fibroblasts-derived exosomes in tumorigenesis[J]. Front Immunol, 2022, 12: 795372. DOI: 10.3389/fimmu.2021.795372.
41.Dai J, Su Y, Zhong S, et al. Exosomes: key players in cancer and potential therapeutic strategy[J]. Signal Transduct Target Ther, 2020, 5(1): 145. DOI: 10.1038/s41392-020-00261-0.
42.Zhang F, Chen L, Li HJ, et al. CXCR4-containing exosomes derived from cancer associated fibroblasts promote epithelial mesenchymal transition in ovarian clear cell carcinoma[J]. Open Medicine Journal, 2022, 9(1): 1-8. DOI: 10.2174/18742203-v9-e221103-2022-13.
43.Hu JH, Tang HN, Wang YH. Cancer-associated fibroblast exosome LINC00355 promotes epithelial-mesenchymal transition and chemoresistance in colorectal cancer through the miR-34b-5p/CRKL axis[J]. Cancer Gene Ther, 2024, 31(2): 259-272. DOI: 10.1038/s41417-023-00700-4.
44.Goulet CR, Champagne A, Bernard G, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling[J]. BMC Cancer, 2019, 19(1): 137. DOI: 10.1186/s12885-019-5353-6.
45.Samart P, Heenatigala Palliyage G, Issaragrisil S, et al. Musashi-2 in cancer-associated fibroblasts promotes non-small cell lung cancer metastasis through paracrine IL-6-driven epithelial-mesenchymal transition[J]. Cell Biosci, 2023, 13(1): 205. DOI: 10.1186/s13578-023-01158-5.
46.张晋滔, 裴文婕, 赵玥琪, 等. 177Lu-FAP-2286 RLT治疗晚期肺癌患者的效果和安全性[J]. 肿瘤影像学, 2024, 33(5): 508-514. [Zhang JT, Pei WJ, Zhao YQ, et al. The efficacy and safety of 177Lu-FAP-2286 radioligand therapy in patients with advanced lung cancer[J]. Oncoradiology, 2024, 33(5): 508-514.] DOI: 10.19732/j.cnki.2096-6210.2024.05.007.
47.Glabman RA, Choyke PL, Sato N. Cancer-associated fibroblasts: tumorigenicity and targeting for cancer therapy[J]. Cancers (Basel), 2022, 14(16): 3906. DOI: 10.3390/cancers14163906.
48.Rizzolio S, Giordano S, Corso S. The importance of being CAFs (in cancer resistance to targeted therapies)[J]. J Exp Clin Cancer Res, 2022, 41(1): 319. DOI: 10.1186/s13046-022-02524-w.
49.Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 8. DOI: 10.1038/s41392-020-00436-9.
50.Wang G, Zhang H, Shen X, et al. Characterization of cancer-associated fibroblasts (CAFs) and development of a CAF-based risk model for triple-negative breast cancer[J]. Cancer Cell Int, 2023, 23(1): 294. DOI: 10.1186/s12935-023-03152-w.
51.Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115. DOI: 10.1038/s41573-018-0004-1.
52.Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance[J]. Trends Cancer, 2022, 8(7): 527-555. DOI: 10.1016/j.trecan.2022.03.001.
53.Fan G, Yu B, Tang L, et al. TSPAN8+ myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer[J]. Sci Transl Med, 2024, 16(741): eadj5705. DOI: 10.1126/scitranslmed.adj5705.
54.Yuan J, Zhou J, Shen L, et al. 1526P Anti-PD-L1/TGF-βRII fusion protein SHR-1701 combined with nab-paclitaxel and gemcitabine in previously untreated patients with locally advanced or metastatic pancreatic cancer: a multicenter, phase Ib/II study[J]. Ann Oncol, 2024, 35: S931-S932. DOI: 10.1016/j.annonc.2024.08.1589.
55.魏会强, 于江, 毕常芬, 等. TGF-β受体Ⅰ抑制剂galunisertib[J]. 现代药物与临床, 2017, 32(7): 1375-1380. [Wei HQ, Yu J, Bi CF, et al. A TGF-β receptor Ⅰ inhibitor: galunisertib[J]. Drugs & Clinic, 2017, 32(7): 1375-1380.] DOI: CNKI:SUN:GWZW.0.2017-07-048.
56.Kim EJ, Sahai V, Abel EV, et al. Pilot clinical trial of hedgehog pathway inhibitor GDC-0449 (Vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma[J]. Clin Cancer Res, 2014, 20(23): 5937-5945. DOI: 10.1158/1078-0432.Ccr-14-1269.
57.LoRusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors[J]. Clin Cancer Res, 2011, 17(8): 2502-2511. DOI: 10.1158/1078-0432.Ccr-10-2745.
58.Altmann A, Haberkorn U, Siveke J. The latest developments in imaging of fibroblast activation protein[J]. J Nucl Med, 2021, 62(2): 160-167. DOI: 10.2967/jnumed.120.244806.
59.Zhou H, Zhong J, Peng S, et al. Synthesis and preclinical evaluation of novel 18F-labeled fibroblast activation protein tracers for positron emission tomography imaging of cancer-associated fibroblasts[J]. Eur J Med Chem, 2024, 264: 115993. DOI: 10.1016/j.ejmech.2023.115993.
60.Pang Y, Zhao L, Meng T, et al. PET imaging of fibroblast activation protein in various types of cancers by using 68Ga-FAP-2286: comparison with 18F-FDG and 68Ga-FAPI-46 in a single-center, prospective study[J]. J Nucl Med, 2023, 64(3): 386-394. DOI: 10.2967/jnumed.122.264544.
61.Kessler L, Hirmas N, Pabst KM, et al. 68Ga-labeled fibroblast activation protein inhibitor (68Ga-FAPI) PET for pancreatic adenocarcinoma: data from the 68Ga-FAPI PET observational trial[J]. J Nucl Med, 2023, 64(12): 1910-1917. DOI: 10.2967/jnumed.122.264827.
62.Ora M, Soni N, Nazar AH, et al. Fibroblast activation protein inhibitor-based radionuclide therapies: current status and future directions[J]. J Nucl Med, 2023, 64(7): 1001-1008. DOI: 10.2967/jnumed.123.265594.
Popular Papers
-
Mediating effects of social support and health literacy on self-efficacy and self-advocacy in patients with postoperative chemotherapy for breast cancer
Aug. 25, 20258550
-
Frontier progress and future strategies in the treatment of pulmonary fibrosis
Aug. 25, 20257809
-
Analysis of depression burden and attribution risk factors among Chinese adolescents aged 10~24 from 1990 to 2021
Sep. 26, 20257541
-
Analysis of cancer disease burden in China from 1990 to 2021
Aug. 25, 20256007
-
A case report on chemotherapy-free treatment for small cell lung cancer
Aug. 25, 20254355
-
The disease burden of infertility in China from 1992 to 2021 based on an age-period-cohort model
Sep. 26, 20254007
-
Systematic review and Meta-analysis of prediction models: a case study on the risk prediction model for hepatocellular carcinoma in patients with chronic hepatitis B
Aug. 25, 20253959
-
Prediction of incidence and mortality rates of nasopharyngeal carcinoma in China from 2022 to 2026: based on GM(1,1) and ARIMA models
Sep. 26, 20253906
-
Research progress on neutrophil extracellular traps in tumors
Sep. 26, 20253737
-
Systematic evaluation of predictive models for deep vein thrombosis risk in patients undergoing hip surgery
Aug. 25, 20253564
-
Relationship between the ratio of non-HDL-C and HDL-C and the risk of all-cause mortality in a population with abnormal glucose metabolism: base on CHARLS database
Aug. 25, 20253520
-
Relationship between serum NF-κB, CXCL13, ADAM17 levels and prognosis in children with primary immune thrombocytopenia
Sep. 26, 20253512
-
The association between sleep duration, overweight/obesity, and multimorbidity among primary care medical staff
Sep. 26, 20253511
-
A study on the implementation and effect of formative evaluation ability training for clinical teachers
Sep. 26, 20253487
-
Progress of gut microbiota in tumor immunotherapy
Sep. 26, 20253487
Welcome to visit Zhongnan Medical Journal Press Series journal website!