Drug-induced liver injury (DILI) is a type of drug-induced liver injury with complex and diverse mechanisms that can lead to liver failure in severe cases, thereby affecting patients' quality of life and survival. In recent years, mitochondrial dysfunction has been shown to play a key role in the occurrence and development of DILI. As the center of cellular energy metabolism, impaired mitochondrial function not only leads to energy deficiency in hepatocytes but also may trigger a series of chain reactions, such as oxidative stress and hepatocyte death. Although several studies have revealed different mechanisms of mitochondrial damage and their associations with DILI, there is still a lack of systematic elucidation of the specific mechanisms and influencing factors. Therefore, this article aims to comprehensively review the latest research progress on mitochondrial dysfunction in DILI, with a particular emphasis on the mechanisms and influencing factors of mitochondrial damage. By analyzing existing literature, it is hope to provide valuable insights and guidance for the clinical intervention and treatment of DILI.
HomeArticlesVol 35,2025 No.5Detail
Research progress of mitochondrial dysfunction in drug-induced liver injury
Published on May. 25, 2025Total Views: 21 timesTotal Downloads: 7 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.张秋月. 药物性肝损伤的临床新进展[J]. 中华灾害救援医学, 2024, 11(8): 925-927, 941. [Zhang QY. Recent clinical advances in drug-induced liver injury[J]. Chinese Journal of Disaster Medicine, 2024, 11(8): 925-927, 941.] DOI: 10.13919/j.issn.2095-6274.ZHJY202405044.
2.Garcia-Cortes M, Robles-Diaz M, Stephens C, et al. Drug induced liver injury: an update[J]. Arch Toxicol, 2020, 94(10): 3381-3407. DOI: 10.1007/s00204-020-02885-1.
3.Suzuki A, Brunt EM, Kleiner DE, et al. The use of liver biopsy evaluation in discrimination of idiopathic autoimmune hepatitis versus drug-induced liver injury[J]. Hepatology, 2011, 54(3): 931-939. DOI: 10.1002/hep.24481.
4.Hassan A, Fontana RJ. The diagnosis and management of idiosyncratic drug-induced liver injury[J]. Liver Int, 2019, 39(1): 31-41. DOI: 10.1111/liv.13931.
5.Chalasani NP, Maddur H, Russo MW, et al. ACG clinical guideline: diagnosis and management of idiosyncratic drug-induced liver injury[J]. Am J Gastroenterol, 2021, 116(5): 878-898. DOI: 10.14309/ajg.0000000000001259.
6.Pop A, Halegoua-DeMarzio D, Barnhart H, et al. Amiodarone and dronedarone causes liver injury with distinctly different clinical presentations[J]. Dig Dis Sci, 2024, 69(4): 1479-1487. DOI: 10.1007/s10620-023-08251-2.
7.Holt M, Ju C. Drug-induced liver injury[J]. Handb Exp Pharmacol, 2010, (196): 3-27. DOI: 10.1007/978-3-642-00663-0_1.
8.冯同, 高瑕, 王波, 等. 线粒体质量控制失调与特发性肺纤维化的关系研究进展[J]. 解放军医学杂志, 2022, 47(1): 78-83. [Feng T, Gao X, Wang B, et al. Research progress on the correlation between mitochondrial quality control disorders and idiopathic pulmonary fibrosis[J]. Medical Journal of Chinese People's Liberation Army, 2022, 47(1): 78-83.] DOI: 10.11855/j.issn.0577-7402.2022.01.0078.
9.Coulson SZ, Duffy BM, Staples JF. Mitochondrial techniques for physiologists[J]. Comp Biochem Physiol B Biochem Mol Biol, 2024, 271: 110947. DOI: 10.1016/j.cbpb.2024.110947.
10.Jia R, Oda S, Tsuneyama K, et al. Establishment of a mouse model of troglitazone-induced liver injury and analysis of its hepatotoxic mechanism[J]. J Appl Toxicol, 2019, 39(11): 1541-1556. DOI: 10.1002/jat.3838.
11.Michelotti P, Duarte T, Dalla CL. Analyzing mitochondrial function in a drosophila melanogaster PINK1B9-null mutant using high-resolution respirometry[J]. J Vis Exp, 2023, 10: (201). DOI: 10.3791/65664.
12.Kolarić TO, Ninčević V, Smolić R, et al. Mechanisms of hepatic cholestatic drug injury[J]. J Clin Transl Hepatol, 2019, 7(1): 86-92. DOI: 10.14218/JCTH.2018.00042.
13.Zotta A, O'Neill LAJ, Yin M. Unlocking potential: the role of the electron transport chain in immunometabolism[J]. Trends Immunol, 2024, 45(4): 259-273. DOI: 10.1016/j.it.2024.02.002.
14.Zong Y, Li H, Liao P, et al. Mitochondrial dysfunction: mechanisms and advances in therapy[J]. Signal Transduct Target Ther, 2024, 9(1): 124. DOI: 10.1038/s41392-024-01839-8.
15.Karbowski M, Neutzner A. Neurodegeneration as a consequence of failed mitochondrial maintenance[J]. Acta Neuropathol, 2012, 123(2): 157-171. DOI: 10.1007/s00401-011-0921-0.
16.Rui L. Energy metabolism in the liver[J]. Compr Physiol, 2014, 4(1): 177-197. DOI: 10.1002/cphy.c130024.
17.She P, Shiota M, Shelton KD, et al. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism[J]. Mol Cell Biol, 2000, 20(17): 6508-6517. DOI: 10.1128/MCB.20.17.6508-6517.2000.
18.Yook JS, Taxin ZH, Yuan B, et al. The SLC25A47 locus controls gluconeogenesis and energy expenditure[J]. Proc Natl Acad Sci U S A, 2023, 120(9): e2216810120. DOI: 10.1073/pnas.2216810120.
19.Lee H, Lee TJ, Galloway CA, et al. The mitochondrial fusion protein OPA1 is dispensable in the liver and its absence induces mitohormesis to protect liver from drug-induced injury[J]. Nat Commun, 2023, 14(1): 6721. DOI: 10.1038/s41467-023-42564-0.
20.LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction[J]. Cell Mol Life Sci, 2024, 81(1): 34. DOI: 10.1007/s00018-023-05061-7.
21.Zhang Y, Fan Y, Hu H, et al. ZHX2 emerges as a negative regulator of mitochondrial oxidative phosphorylation during acute liver injury[J]. Nat Commun, 2023, 14(1): 7527. DOI: 10.1038/s41467-023-43439-0.
22.Sato T, Segawa M, Sekine S, et al. Mild depolarization is involved in troglitazone-induced liver mitochondrial membrane permeability transition via mitochondrial iPLA2 activation[J]. J Toxicol Sci, 2019, 44(11): 811-820. DOI: 10.2131/jts.44.811.
23.Nguyen NT, Du K, Akakpo JY, et al. Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice[J]. Toxicol Lett, 2021, 338: 21-31. DOI: 10.1016/j.toxlet.2020.12.005.
24.Aires CC, Ijlst L, Stet F, et al. Inhibition of hepatic carnitine palmitoyl-transferase I (CPT IA) by valproyl-CoA as a possible mechanism of valproate-induced steatosis[J]. Biochem Pharmacol, 2010, 79(5): 792-799. DOI: 10.1016/j.bcp.2009.10.011.
25.Hu J, Kholmukhamedov A, Lindsey CC, et al. Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: protection by starch-desferal and minocycline[J]. Free Radic Biol Med, 2016, 97: 418-426. DOI: 10.1016/j.freeradbiomed.2016.06.024.
26.Berson A, Descatoire V, Sutton A, et al. Toxicity of alpidem, a peripheral benzodiazepine receptor ligand, but not zolpidem, in rat hepatocytes: role of mitochondrial permeability transition and metabolic activation[J]. J Pharmacol Exp Ther, 2001, 299(2): 793-800. https://pubmed.ncbi.nlm.nih.gov/11602696/
27.Xuan J, Ren Z, Qing T, et al. Mitochondrial dysfunction induced by leflunomide and its active metabolite[J]. Toxicology, 2018, 396-397: 33-45. DOI: 10.1016/j.tox.2018.02.003.
28.Li Y, Couch L, Higuchi M, et al. Mitochondrial dysfunction induced by sertraline, an antidepressant agent[J]. Toxicol Sci, 2012, 127(2): 582-591. DOI: 10.1093/toxsci/kfs100.
29.Zhuang X, Li L, Liu T, et al. Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: a review[J]. Front Pharmacol, 2022, 13: 1037814. DOI: 10.3389/fphar.2022.1037814.
30.Woodhead JL, Yang K, Oldach D, et al. Analyzing the mechanisms behind macrolide antibiotic-induced liver injury using quantitative systems toxicology modeling[J]. Pharm Res, 2019, 36(3): 48. DOI: 10.1007/s11095-019-2582-y.
31.Lee KK, Fujimoto K, Zhang C, et al. Isoniazid-induced cell death is precipitated by underlying mitochondrial complex I dysfunction in mouse hepatocytes[J]. Free Radic Biol Med, 2013, 65: 584-594. DOI: 10.1016/j.freeradbiomed.2013.07.038.
32.Niu L, Cao Q, Zhang T, et al. Simultaneous detection of mitochondrial viscosity and peroxynitrite in livers from subjects with drug-induced fatty liver disease using a novel fluorescent probe[J]. Talanta, 2023, 260: 124591. DOI: 10.1016/j.talanta.2023.124591.
33.Shi C, Hao B, Yang Y, et al. JNK signaling pathway mediates acetaminophen-induced hepatotoxicity accompanied by changes of glutathione S-transferase A1 content and expression[J]. Front Pharmacol, 2019, 10: 1092. DOI: 10.3389/fphar.2019.01092.
34.Lambrecht R, Rudolf F, Ückert AK, et al. Non-canonical BIM-regulated energy metabolism determines drug-induced liver necrosis[J]. Cell Death Differ, 2024, 31(1): 119-131. DOI: 10.1038/s41418-023-01245-7.
35.Lopez-Pascual E, Rienda I, Perez-Rojas J, et al. Drug-induced fatty liver disease (DIFLD): a comprehensive analysis of clinical, biochemical, and histopathological data for mechanisms identification and consistency with current adverse outcome pathways[J]. Int J Mol Sci, 2024, 25(10): 5203. DOI: 10.3390/ijms25105203.
36.Ezhilarasan D, Mani U. Valproic acid induced liver injury: an insight into molecular toxicological mechanism[J]. Environ Toxicol Pharmacol, 2022, 95: 103967. DOI: 10.1016/j.etap.2022.103967.
37.Nakamura H, Matsui T, Shinozawa T. Triclocarban induces lipid droplet accumulation and oxidative stress responses by inhibiting mitochondrial fatty acid oxidation in HepaRG cells[J]. Toxicol Lett, 2024, 396: 11-18. DOI: 10.1016/j.toxlet.2024.04.002.
38.Zhao C, Yu N, Li W, et al. Slow-release H2S donor anethole dithiolethione protects liver from lipotoxicity by improving fatty acid metabolism[J]. Front Pharmacol, 2020, 11: 549377. DOI: 10.3389/fphar.2020.549377.
39.李晓芸, 钟巍, 茅益民. 他汀类药物相关药性肝损伤[J]. 中华肝脏病杂志, 2023, 31(6): 659-663. [Li XY, Zhong W, Mao YM. Statin-related drug-induced liver injury[J]. Chinese Journal of Hepatology, 2023, 31(6): 659-663.] DOI: 10.3760/cma.j.cn501113-20230418-00174.
40.Liu F, Liu Y, Peng Q, et al. Creatinine accelerates APAP-induced liver damage by increasing oxidative stress through ROS/JNK signaling pathway[J]. Front Pharmacol, 2022, 13: 959497. DOI: 10.3389/fphar.2022.959497.
41.Komulainen T, Lodge T, Hinttala R, et al. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model[J]. Toxicology, 2015, 331: 47-56. DOI: 10.1016/j.tox.2015.03.001.
42.Pu S, Pan Y, Zhang Q, et al. Endoplasmic reticulum stress and mitochondrial stress in drug-induced liver injury[J]. Molecules, 2023, 28(7): 3160. DOI: 10.3390/molecules28073160.
43.Liu B, Ding C, Tang W, et al. Hepatic ROS mediated macrophage activation is responsible for irinotecan induced liver injury[J]. Cells, 2022, 11(23): 3791. DOI: 10.3390/cells11233791.
44.Zhang T, Ikejima T, Li L, et al. Impairment of mitochondrial biogenesis and dynamics involved in isoniazid-induced apoptosis of HepG2 cells was alleviated by p38 MAPK pathway[J]. Front Pharmacol, 2017, 8: 753. DOI: 10.3389/fphar.2017.00753.
45.Li F, Zhou J, Li Y, et al. Mitochondrial damage and Drp1 overexpression in rifampicin- and isoniazid-induced liver injury cell model[J]. J Clin Transl Hepatol, 2019, 7(1): 40-45. DOI: 10.14218/JCTH.2018.00052.
46.Mohi-Ud-Din R, Mir RH, Sawhney G, et al. Possible pathways of hepatotoxicity caused by chemical agents[J]. Curr Drug Metab, 2019, 20(11): 867-879. DOI: 10.2174/1389200220666191105121653.
47.Singh B, Avula K, Sufi SA, et al. Defective mitochondrial quality control during dengue infection contributes to disease pathogenesis[J]. J Virol, 2022, 96(20): e0082822. DOI: 10.1128/jvi.00828-22.
48.Rocca C, Soda T, De Francesco EM, et al. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer[J]. J Transl Med, 2023, 21(1): 635. DOI: 10.1186/s12967-023-04498-5.
49.Wang F, Han J, Wang X, et al. Roles of HIF-1αlpha/BNIP3 mediated mitophagy in mitochondrial dysfunction of letrozole-induced PCOS rats[J]. J Mol Histol, 2022, 53(5): 833-842. DOI: 10.1007/s10735-022-10096-4.
50.Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, et al. Mitochondrial calcium: effects of its imbalance in disease[J]. Antioxidants (Basel), 2022, 11(5): 801. DOI: 10.3390/antiox11050801.
51.王晓英. Ca2+信号转导在急性乙醛性肝损伤发病机制作用中的探讨[D]. 济南: 山东大学, 2008. [Wang XY. A study on the effect of the Ca2+ signal transduction in the pathogenesis of acute alcoholic liver injury[D]. Jinan: Shandong University, 2008.] DOI: 10.7666/d.Y1348559.
52.Wen B, Zhou K, Hu C, et al. Salidroside ameliorates ischemia-induced neuronal injury through AMPK dependent and independent pathways to maintain mitochondrial quality control[J]. Am J Chin Med, 2022, 50(4): 1133-1153. DOI: 10.1142/S0192415X2250046X.
53.Fromenty B, Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity[J]. Pharmacol Ther, 1995, 67(1): 101-154. DOI: 10.1016/0163-7258(95)00012-6.
54.Babatin M, Lee SS, Pollak PT. Amiodarone hepatotoxicity[J]. Curr Vasc Pharmacol, 2008, 6(3): 228-236. DOI: 10.2174/ 157016108784912019.
55.Adams PC, Holt DW, Storey GC, et al. Amiodarone and its desethyl metabolite: tissue distribution and morphologic changes during long-term therapy[J]. Circulation, 1985, 72(5): 1064-1075. DOI: 10.1161/01.cir.72.5.1064.
56.卢丹丹, 芦涤, 王声祥, 等. 胺碘酮注射液致长期饮酒的急性心衰患者肝损伤1例[J]. 药学前沿, 2022, 25(11): 1998-2000. [Lu DD, Lu D, Wang SX, et al. One case of liver injury in acute heart failure patients with long-term drinking caused by amiodarone injection[J]. Frontiers in Pharmaceutical Sciences, 2022, 25(11): 1998-2000.] DOI: 10.19962/j.cnki.issn1008-049X.2022.11.023.
57.Becker MW, Schwambach KH, Lunardelli M, et al. Overview of drug induced liver injury in Brazil: what is the role of public health policy on the evidence?[J]. World J Gastrointest Pharmacol Ther, 2021, 12(3): 40-55. DOI: 10.4292/wjgpt.v12.i3.40.
58.Li C, Rao T, Chen X, et al. HLA-B*35:01 allele is a potential biomarker for predicting polygonum multiflorum-induced liver injury in humans[J]. Hepatology, 2019, 70(1): 346-357. DOI: 10.1002/hep.30660.
59.Adebayo M, Singh S, Singh AP, et al. Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis[J]. FASEB J, 2021, 35(6): e21620. DOI: 10.1096/fj.202100067R.
60.Ball AL, Bloch KM, Rainbow L, et al. Assessment of the impact of mitochondrial genotype upon drug-induced mitochondrial dysfunction in platelets derived from healthy volunteers[J]. Arch Toxicol, 2021, 95(4): 1335-1347. DOI: 10.1007/s00204-021-02988-3.
61.Larrey D. Epidemiology and individual susceptibility to adverse drug reactions affecting the liver[J]. Semin Liver Dis, 2002, 22(2): 145-155. DOI: 10.1055/s-2002-30105.
62.Chen M, Suzuki A, Borlak J, et al. Drug-induced liver injury: interactions between drug properties and host factors[J]. J Hepatol, 2015, 63(2): 503-514. DOI: 10.1016/j.jhep.2015.04.016.
63.Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes[J]. Mol Pharmacol, 2009, 76(2): 215-228. DOI: 10.1124/mol.109.056705.
Popular Papers
-
Prediction and analysis of disease burden of mental disorders in China from 1990 to 2021
Jan. 25, 20252774
-
Analysis of the effect of dietary factors on irritable bowel syndrome by Mendelian randomized method
Apr. 25, 20252617
-
Construction of a depression risk prediction model for elderly individuals living alone with chronic diseases in China
Dec. 28, 20242232
-
The analysis of disease burden of benign prostatic hyperplasia in China from 1990 to 2021
Dec. 28, 20242229
-
Interpretation of Specification for Developing Clinical Practice Guidelines of Organic Integration of Traditional Chinese and Western Medicine
Dec. 28, 20241870
-
Prevalence and influencing factors of non-suicidal self-injurious behaviour among Chinese college students: a Meta-analysis
Jan. 25, 20251861
-
Methodology for evidence-based urology——evidence classification and retrieval
Jan. 25, 20251802
-
Construction of a predictive model for the risk of aspiration in enteral nutrition patients in ICU
Jan. 25, 20251789