Objective To explore the causal relationship between cathepsins and autoimmune thyroid diseases (AITDs) using Mendelian randomization (MR) study, and to provide genetic evidence for the association between cathepsins and the risk of AITDs.
Methods The pooled datasets of nine cathepsins (B, E, F, G, H, L2, O, S and Z) and four AITDs were selected from a publicly available genome-wide association study (GWAS) website. The generalized summary data-based MR (GSMR), univariate bidirectional MR, and multivariate MR (MVMR) were used to analyze the causal relationship between them and the independent effects of specific risk factors. Plasma protein quantitative trait loci (pQTL) genetic instrumental variables were obtained from the Ferkingstad study to verify causality at the protein level. The inverse variance weighted method (IVW) was used as the primary analytical approach of univariate bidirectional MR Analysis, supplemented by MR-Egger, weighted median method, simple model, and weighted model methods. Horizontal pleiotropy and heterogeneity were evaluated, and sensitivity analysis was performed to ensure the robustness of the results.
Results GSMR and forward MR analysis showed that cathepsin F (CTSF) significantly reduced the risk of Graves disease (GD). Reverse MR Analysis showed no reverse causality between the GD and CTSF. After adjusting for the effects of other cathepsins, MVMR analysis confirmed that the correlation between CTSF and GD was still significant. Furthermore, the causal effect between CTSF and GD was verified by cis-pQTL MR.
Conclusion There is a causal relationship between CTSF and the reduced risk of GD, and CTSF is a potential protective factor against GD.
1.Petranović Ovčariček P, Görges R, Giovanella L. Autoimmune thyroid diseases[J]. Semin Nucl Med, 2024, 54(2): 219-236. DOI: 10.1053/j.semnuclmed.2023.11.002.
2.Milo T, Korem Kohanim Y, Toledano Y, et al. Autoimmune thyroid diseases as a cost of physiological autoimmune surveillance[J]. Trends Immunol, 2023, 44(5): 365-371. DOI: 10.1016/j.it.2023.03.007.
3.Wang K, Zhang Q, Zhang P, et al. Use of bidirectional Mendelian randomization to unveil the association of Helicobacter pylori infection and autoimmune thyroid diseases[J]. Sci Adv, 2024, 10(31): eadi8646. DOI: 10.1126/sciadv.adi8646.
4.Yadati T, Houben T, Bitorina A, et al. The ins and outs of cathepsins: physiological function and role in disease management[J]. Cells, 2020, 9(7): 1679. DOI: 10.3390/cells9071679.
5.Scarcella M, d'Angelo D, Ciampa M, et al. The key role of lysosomal protease cathepsins in viral infections[J]. Int J Mol Sci, 2022, 23(16): 9089. DOI: 10.3390/ijms23169089.
6.Brix K, Szumska J, Weber J, et al. Auto-regulation of the thyroid gland beyond classical pathways[J]. Exp Clin Endocrinol Diabetes, 2020, 128(6-07): 437-445. DOI: 10.1055/a-1080-2969.
7.Oda K, Luo Y, Yoshihara A, et al. Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes[J]. Biochem Biophys Res Commun, 2017, 483(1): 541-546. DOI: 10.1016/j.bbrc.2016.12.109.
8.Shuja S, Cai J, Iacobuzio-Donahue C, et al. Cathepsin B activity and protein levels in thyroid carcinoma, Graves' disease, and multinodular goiters[J]. Thyroid, 1999, 9(6): 569-577. DOI: 10.1089/thy.1999.9.569.
9.Métayé T, Kraimps JL, Goujon JM, et al. Expression, localization, and thyrotropin regulation of cathepsin D in human thyroid tissues[J]. J Clin Endocrinol Metab, 1997, 82(10): 3383-3388. DOI: 10.1210/jcem.82.10.4298.
10.Carter AR, Sanderson E, Hammerton G, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation[J]. Eur J Epidemiol, 2021, 36(5): 465-478. DOI: 10.1007/s10654-021-00757-1.
11.Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome[J]. Nature, 2018, 558(7708): 73-79. DOI: 10.1038/s41586-018-0175-2.
12.Zhao Y, Quan E, Zeng T, et al. Type 1 diabetes, its complications, and non-ischemic cardiomyopathy: a Mendelian randomization study of European ancestry[J]. Cardiovasc Diabetol, 2024, 23(1): 31. DOI: 10.1186/s12933-023-02117-7.
13.Huang X, Deng H, Zhang B, et al. The causal relationship between cathepsins and digestive system tumors: a Mendelian randomization study[J]. Front Oncol, 2024, 14: 1365138. DOI: 10.3389/fonc.2024.1365138.
14.FerkingstadE, SulemP, AtlasonBA, et al. Large-scale integrationof the plasma proteome withgenetics and disease[J]. Nat Genet, 2021, 53(12): 1712-1721. DOI: 10.1038/s41588-021-00978-w.
15.Emdin CA, Khera AV, Kathiresan S. Mendelian randomization[J]. JAMA, 2017, 318(19): 1925-1926. DOI: 10.1001/jama.2017.17219.
16.Fang Y, Si X, Wang J, et al. Alzheimer disease and epilepsy: a Mendelian randomization study[J]. Neurology, 2023, 101(4): e399-e409. DOI: 10.1212/wnl.0000000000207423.
17.Sloan S, Jenvey C, Cairns C, et al. Cathepsin F of Teladorsagia circumcincta is a recently evolved cysteine protease[J]. Evol Bioinform Online, 2020, 16: 1176934320962521. DOI: 10.1177/1176934320962521.
18.Zavasnik-Bergant T, Turk B. Cysteine cathepsins in the immune response[J]. Tissue Antigens, 2006, 67(5): 349-355. DOI: 10.1111/j.1399-0039.2006.00585.x.
19.Vizovišek M, Vidak E, Javoršek U, et al. Cysteine cathepsins as therapeutic targets in inflammatory diseases[J]. Expert Opin Ther Targets, 2020, 24(6): 573-588. DOI: 10.1080/14728222.2020.1746765.
20.Obermajer N, Doljak B, Kos J. Cysteine cathepsins: regulators of antitumour immune response[J]. Expert Opin Biol Ther, 2006, 6(12): 1295-1309. DOI: 10.1517/14712598.6.12.1295.
21.Gao C, Fu Q, Su B, et al. The involvement of cathepsin F gene (CTSF) in turbot (Scophthalmus maximus L.) mucosal immunity[J]. Fish Shellfish Immunol, 2017, 66: 270-279. DOI: 10.1016/j.fsi.2017.05.030.
22.Shi GP, Bryant RA, Riese R, et al. Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages[J]. J Exp Med, 2000, 191(7): 1177-1186. DOI: 10.1084/jem.191.7.1177.
23.Wu Y, Li Q, Lou Y, et al. Cysteine cathepsins and autoimmune diseases: a bidirectional Mendelian randomization[J]. Medicine (Baltimore), 2024, 103(43): e40268. DOI: 10.1097/md.0000000000040268.
24.Zhu P, Wu X, Zhou J, et al. Gene polymorphisms of pro-inflammatory cytokines may affect the risk of Graves' disease: a Meta-analysis[J]. J Endocrinol Invest, 2021, 44(2): 311-319. DOI: 10.1007/s40618-020-01300-x.
25.Ji C, Zhao Y, Kou YW, et al. Cathepsin F knockdown induces proliferation and inhibits apoptosis in gastric cancer cells[J]. Oncol Res, 2018, 26(1): 83-93. DOI: 10.3727/096504017x14928634401204.
26.Stassi G, De Maria R. Autoimmune thyroid disease: new models of cell death in autoimmunity[J]. Nat Rev Immunol, 2002, 2(3): 195-204. DOI: 10.1038/nri750.
27.Andrikoula M, Tsatsoulis A. The role of Fas-mediated apoptosis in thyroid disease[J]. Eur J Endocrinol, 2001, 144(6): 561-568. DOI: 10.1530/eje.0.1440561.
28.Chen X, Kong J, Pan J, et al. Kidney damage causally affects the brain cortical structure: a Mendelian randomization study[J]. EBioMedicine, 2021, 72: 103592. DOI: 10.1016/j.ebiom.2021.103592.