Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress of kynurenine pathway in ophthalmic diseases

Published on Nov. 01, 2025Total Views: 498 timesTotal Downloads: 131 timesDownloadMobile

Author: LI Linwei 1# HUANG Pingping 1# XIE Hao 2 ZHENG Mengxue 1 XIAO Xuan 1, 2 YANG Anhuai 1

Affiliation: 1. Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China 2. Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China

Keywords: Kynurenine metabolism Keratitis Cataract Glaucoma Diabetic retinopathy

DOI: 10.12173/j.issn.1004-5511.202501113

Reference: Li LW, Huang PW, Xie H, Zheng MX, Xiao X, Yang AH. Research progress of kynurenine pathway in ophthalmic diseases[J]. Yixue Xinzhi Zazhi, 2025, 35(10): 1221-1227. DOI: 10.12173/j.issn.1004-5511.202501113. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

The kynurenine pathway (KP) is the primary route of tryptophan metabolism in most mammalian cells, with approximately 95% of dietary tryptophan being converted into kynurenine and its downstream metabolites. Kynurenine is a central metabolite of tryptophan and possesses anti-inflammatory, antioxidant, and neuroprotective properties. Current research has shown that the KP plays a role in various diseases such as keratitis, cataract, glaucoma, and diabetic retinopathy. It was deeply involved in ocular pathophysiology through multiple mechanisms, including immunomodulation, antioxidant activity, neuroprotection, and mediation of photodamage. This paper presents a review of the role of KP in the eye and their related mechanisms in ocular diseases, including keratitis, cataract, glaucoma, and diabetic retinopathy, along with an outlook on future research.

Full-text
Please download the PDF version to read the full text: download
References

1.Xue C, Li G, Zheng Q, et al. Tryptophan metabolism in health and disease[J]. Cell Metab, 2023, 35(8): 1304-1326. DOI: 10.1016/j.cmet.2023.06.004.

2.Milosavljevic S, Smith AK, Wright CJ, et al. Kynurenine aminotransferase II inhibition promotes sleep and rescues impairments induced by neurodevelopmental insult[J]. Transl Psychiatry, 2023, 13(1): 106. DOI: 10.1038/s41398-023-02399-1.

3.Ueland HO, Ulvik A, Løvås K, et al. Systemic activation of the kynurenine pathway in graves disease with and without ophthalmopathy[J]. J Clin Endocrinol Metab, 2023, 108(6): 1290-1297. DOI: 10.1210/clinem/dgad004.

4.Xu X, Harvey-Samuel T, Yang J, et al. Ommochrome pathway genes kynurenine 3-hydroxylase and cardinal participate in eye pigmentation in Plutella xylostella[J]. BMC Mol Cell Biol, 2020, 21(1): 63. DOI: 10.1186/s12860-020-00308-8.

5.Zarnowski T, Tulidowicz-Bielak M, Zarnowska I, et al. Kynurenic acid and neuroprotective activity of the ketogenic diet in the eye[J]. Curr Med Chem, 2017, 24(32): 3547-3558. DOI: 10.2174/0929867324666170509120257.

6.Mrštná K, Krčmová LK, Švec F. Advances in kynurenine analysis[J]. Clin Chim Acta, 2023, 547: 117441. DOI: 10.1016/j.cca.2023.117441.

7.Tsuji A, Ikeda Y, Yoshikawa S, et al. The tryptophan and kynurenine pathway involved in the development of immune-related diseases[J]. Int J Mol Sci, 2023, 24(6): 5742. DOI: 10.3390/ijms24065742.

8.Savitz J. The kynurenine pathway: a finger in every pie[J]. Mol Psychiatry, 2020, 25(1): 131-147. DOI: 10.1038/s41380-019-0414-4.

9.Heyes MP, Saito K, Crowley JS, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease[J]. Brain, 1992, 115(Pt 5): 1249-1273. DOI: 10.1093/brain/115.5.1249.

10.Kincses ZT, Toldi J, Vécsei L. Kynurenines, neurodegeneration and Alzheimer's disease[J]. J Cell Mol Med, 2010, 14(8): 2045-2054. DOI: 10.1111/j.1582-4934.2010.01123.x.

11.Liu XH, Zhai XY. Role of tryptophan metabolism in cancers and therapeutic implications[J]. Biochimie, 2021, 182: 131-139. DOI: 10.1016/j.biochi.2021.01.005.

12.Sudar-Milovanovic E, Gluvic Z, Obradovic M, et al. Tryptophan metabolism in atherosclerosis and diabetes[J]. Curr Med Chem, 2022, 29(1): 99-113. DOI: 10.2174/0929867328666210714153649.

13.Matysik-Woźniak A, Jünemann A, Turski WA, et al. The presence of kynurenine aminotransferases in the human cornea: evidence from bioinformatics analysis of gene expression and immunohistochemical staining[J]. Mol Vision, 2017, 23: 364-371. https://pubmed.ncbi.nlm.nih.gov/28706436/

14.Rejdak R, Rummelt C, Zrenner E, et al. Presence of L-kynurenine aminotransferase III in retinal ganglion cells and corpora amylacea in the human retina and optic nerve[J]. Folia Neuropathol, 2011, 49(2): 132-137. DOI: 10.3109/15513815.2011.618873.

15.Staniszewska MM, Nagaraj RH. 3-hydroxykynurenine-mediated modification of human lens proteins: structure determination of a major modification using a monoclonal antibody[J]. J Biol Chem, 2005, 280(23): 22154-22164. DOI: 10.1074/jbc.m501419200.

16.Fiedorowicz M, Choragiewicz T, Thaler S, et al. Tryptophan and kynurenine pathway metabolites in animal models of retinal and optic nerve damage: different dynamics of changes[J]. Front Physiol, 2019, 10: 1254. DOI: 10.3389/fphys.2019.01254.

17.Hebbar S, Traikov S, Hälsig C, et al. Modulating the kynurenine pathway or sequestering toxic 3-hydroxykynurenine protects the retina from light induced damage in Drosophila[J]. PLoS Genet, 2023, 19(3): e1010644. DOI: 10.1371/journal.pgen.1010644.

18.Nahomi RB, Nam MH, Rankenberg J, et al. Kynurenic acid protects against ischemia/reperfusion-induced retinal ganglion cell death in mice[J]. Int J Mol Sci, 2020, 21(5): 1795. DOI: 10.3390/ijms21051795.

19.Rejdak R, Junemann A, Grieb P, et al. Kynurenic acid and kynurenine aminotransferases in retinal aging and neurodegeneration[J]. Pharmacol Rep, 2011, 63(6): 1324-1334. DOI: 10.1016/s1734-1140(11)70697-1.

20.Vorwerk CK, Kreutz MR, Dreyer EB, et al. Systemic L-kynurenine administration partially protects against NMDA, but not kainate-induced degeneration of retinal ganglion cells, and reduces visual discrimination deficits in adults rats[J]. Invest Ophthalmol Visual Sci, 1996, 37(12): 2382-2392. DOI: 10.1111/j.1574-695X.1996.tb00111.x.

21.Ryu YH, Kim JC. Expression of indoleamine 2,3-dioxygenase in human corneal cells as a local immunosuppressive factor[J]. Invest Ophthalmol Visual Sci, 2007, 48(9): 4148-4152. DOI: 10.1167/iovs.05-1336.

22.Yang JW, Ham DS, Kim HW, et al. Expression of Stat3 and indoleamine 2, 3-dioxygenase in cornea keratocytes as factor of ocular immune privilege[J]. Graefes Arch Clin Exp Ophthalmol, 2011, 250(1): 25-31. DOI: 10.1007/s00417-011-1768-8.

23.Beutelspacher SC, Pillai R, Watson MP, et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression[J]. Eur J Immunol, 2006, 36(3): 690-700. DOI: 10.1002/eji.200535238.

24.Bock F, Rössner S, Onderka J, et al. Topical application of soluble CD83 induces IDO-mediated immune modulation, increases Foxp3+ T cells, and prolongs allogeneic corneal graft survival[J]. J Immunol, 2013, 191(4): 1965-1975. DOI: 10.4049/jimmunol.1201531.

25.Ke H, Zhang W, Xu W, et al. Indoleamine 2,3-dioxygenase-transfected bone marrow-derived mesenchymal stem cells promote corneal allograft survival by inhibiting T cell proliferation: a rat study[J]. Transplant Immunol, 2023, 82: 101960. DOI: 10.1016/j.trim.2023.101960.

26.Zaher SS, Germain C, Fu H, et al. 3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival[J]. Invest Ophthalmol Visual Sci, 2011, 52(5): 2640-2648. DOI: 10.1167/iovs.10-5793.

27.Serbecic N, Beutelspacher SC. Indoleamine 2,3-dioxygenase protects corneal endothelial cells from UV mediated damage[J]. Exp Eye Res, 2005, 82(3): 416-426. DOI: 10.1016/j.exer.2005.07.016.

28.Matysik-Woźniak A, Paduch R, Turski WA, et al. Effects of tryptophan, kynurenine and kynurenic acid exerted on human reconstructed corneal epithelium in vitro[J]. Pharmacol Rep, 2017, 69(4): 722-729. DOI: 10.1016/j.pharep.2017.02.020.

29.Jiang N, Zhao G, Lin J, et al. Indoleamine 2,3-dioxygenase is involved in the inflammation response of corneal epithelial cells to Aspergillus fumigatus infections[J]. PLoS One, 2015, 10(9): e0137423. DOI: 10.1371/journal.pone.0137423.

30.Jiang N, Zhao GQ, Lin J, et al. Expression of indoleamine 2,3-dioxygenase in a murine model of Aspergillus fumigatus keratitis[J]. Int J Ophthalmol, 2016, 9(4): 491-496. DOI: 10.18240/ijo.2016.04.03.

31.Guo SX, Jiang N, Zhang L, et al. Indoleamine 2,3-dioxygenase adjusts neutrophils recruitment and chemotaxis in Aspergillus fumigatus keratitis[J]. Int J Ophthalmol, 2022, 15(3): 380-387. DOI: 10.18240/ijo.2022.03.02.

32.Yu F, Jiang W, Zhang L, et al. IDO regulates macrophage functions by inhibiting the CCL2/CCR2 signaling pathway in fungal keratitis[J]. Cornea, 2023, 42(8): 1005-1015. DOI: 10.1097/ico.0000000000003309.

33.Jiang N, Zhang L, Zhao G, et al. Indoleamine 2,3-dioxygenase regulates macrophage recruitment, polarization and phagocytosis in Aspergillus fumigatus keratitis[J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 28. DOI: 10.1167/iovs.61.8.28.

34.Haruki T, Miyazaki D, Inata K, et al. Indoleamine 2,3-dioxygenase 1 in corneal endothelial cells limits herpes simplex virus type 1-induced acquired immune response[J]. Br J Ophthalmol, 2015, 99(10): 1435-1442. DOI: 10.1136/bjophthalmol-2015-306863.

35.Pulukool SK, Bhagavatham SKS, Kannan V, et al. Elevated dimethylarginine, ATP, cytokines, metabolic remodeling involving tryptophan metabolism and potential microglial inflammation characterize primary open angle glaucoma[J]. Sci Rep, 2021, 11(1): 9766. DOI: 10.1038/s41598-021-89137-z.

36.Yang Y, Wang N, Xu L, et al. Aryl hydrocarbon receptor dependent anti-inflammation and neuroprotective effects of tryptophan metabolites on retinal ischemia/reperfusion injury[J]. Cell Death Dis, 2023, 14(2): 92. DOI: 10.1038/s41419-023-05616-3.

37.Fiedorowicz M, Choragiewicz T, Turski WA, et al. Tryptophan pathway abnormalities in a murine model of hereditary glaucoma[J]. Int J Mol Sci, 2021, 22(3): 1039. DOI: 10.3390/ijms22031039.

38.Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and Meta-analysis[J]. Lancet Glob Health, 2017, 5(12): e1221-e1234. DOI: 10.1016/S2214-109X(17)30393-5.

39.Gakamsky A, Duncan RR, Howarth NM, et al. Tryptophan and non-tryptophan fluorescence of the eye lens proteins provides diagnostics of cataract at the molecular level[J]. Sci Rep, 2017, 7: 40375. DOI: 10.1038/srep40375.

40.Wood AM, Truscott RJW. UV filters in human lenses: tryptophan catabolism[J]. Exp Eye Res, 1993, 56(3): 317-325. DOI: 10.1006/exer.1993.1041.

41.Tsentalovich YP, Sherin PS, Kopylova LV, et al. Photochemical properties of UV filter molecules of the human eye[J]. Invest Ophthalmol Visual Sci, 2011, 52(10): 7687-7696. DOI: 10.1167/iovs.11-8120.

42.Flieger J, Święch-Zubilewicz A, Śniegocki T, et al. Determination of tryptophan and its major metabolites in fluid from the anterior chamber of the eye in diabetic patients with cataract by liquid chromotography mass spectrometry (LC-MS/MS)[J]. Molecules, 2018, 23(11): 3012. DOI: 10.3390/molecules23113012.

43.Zhuravleva YS, Sherin PS. Influence of pH on radical reactions between kynurenic acid and amino acids tryptophan and tyrosine. Part I. amino acids in free state[J]. Free Radical Biol Med, 2021, 172: 331-339. DOI: 10.1016/j.freeradbiomed.2021.06.015.

44.Gakamsky A, Duncan RR, Howarth NM, et al. Tryptophan and non-tryptophan fluorescence of the eye lens proteins provides diagnostics of cataract at the molecular level[J]. Sci Rep, 2017, 7: 40375. DOI: 10.1038/srep40375.

45.Al-Qahtani Z, Al-Kuraishy HM, Ali NH, et al. Kynurenine pathway in type 2 diabetes: role of metformin[J]. Drug Dev Res, 2024, 85(5): e22243. DOI: 10.1002/ddr.22243.

46.Bakker L, Ramakers IHGB, Van Boxtel MPJ, et al. Associations between plasma kynurenines and cognitive function in individuals with normal glucose metabolism, prediabetes and type 2 diabetes: the Maastricht study[J]. Diabetologia, 2021, 64(11): 2445-2457. DOI: 10.1007/s00125-021-05521-4.

47.Cernaro V, Loddo S, Macaione V, et al. RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus[J]. Int Urol Nephrol, 2020, 52(6): 1125-1133. DOI: 10.1007/s11255-020-02469-z.

48.Chailurkit LO, Chanprasertyothin S, Thongmung N, et al. Targeted metabolomics suggests a probable role of the FTO gene in the kynurenine pathway in prediabetes[J]. PeerJ, 2022, 10: e13612. DOI: 10.7717/peerj.13612.

49.Kozieł K, Urbanska EM. Kynurenine pathway in diabetes mellitus-novel pharmacological target?[J]. Cells, 2023, 12(3): 460. DOI: 10.3390/cells12030460.

50.Kubacka J, Staniszewska M, Sadok I, et al. The kynurenine pathway in obese middle-aged women with normoglycemia and type 2 diabetes[J]. Metabolites, 2022, 12(6): 492. DOI: 10.3390/metabo12060492.

51.Ancel P, Martin JC, Doukbi E, et al. Untargeted multiomics approach coupling lipidomics and metabolomics profiling reveals new insights in diabetic retinopathy[J]. Int J Mol Sci, 2023, 24(15): 12053. DOI: 10.3390/ijms241512053.

52.Yun JH, Kim JM, Jeon HJ, et al. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients[J]. PLoS One, 2020, 15(10): e0241365. DOI: 10.1371/journal.pone.0241365.

53.Munipally PK, Agraharm SG, Valavala VK, et al. Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients[J]. Arch Physiol Biochem, 2011, 117(5): 254-258. DOI: 10.3109/13813455.2011.623705.

54.Mokhtar ER, Mahmoud DA, Ebrahim GE, et al. Serum metabolomic profiles and semaphorin-3A as biomarkers of diabetic retinopathy progression[J]. Egypt J Immunol, 2023, 30(2): 83-98. https://pubmed.ncbi.nlm.nih.gov/37031410/

55.Nagaraj R, Nahomi R. Pro-inflammatory cytokines induce apoptosis of human retinal capillary endothelial cells through downregulation of Hsp27[J]. Acta Ophthalmol (Copenh), 2013, 1842(2): 164-174. DOI: 10.1111/j.1755-3768.2013.4663.x.

56.Yang Y, Liu X, Liu X, et al. The role of the kynurenine pathway in cardiovascular disease[J]. Front Cardiovasc Med, 2024, 11: 1406856. DOI: 10.3389/fcvm.2024.1406856.

57.Zhang J, Liu Y, Zhi X, et al. Tryptophan catabolism via the kynurenine pathway regulates infection and inflammation: from mechanisms to biomarkers and therapies[J]. Inflamm Res, 2024, 73(6): 979-996. DOI: 10.1007/s00011-024-01878-5.

Popular Papers