Welcome to visit Zhongnan Medical Journal Press Series journal website!

Impact of assisted reproductive technology on fetal development

Published on Nov. 01, 2025Total Views: 47 timesTotal Downloads: 16 timesDownloadMobile

Author: LIU Yulu 1# WANG Ziqing 1# SUI Xuesong 1 GAO Lu 1, 2, 3

Affiliation: 1. School of Basic Medicine Sciences, Naval Medical University, Shanghai 200433, China 2. Shanghai Key Laboratory of Assisted Reproduction and Reproductive Genetics, Shanghai 200001, China 3. Shanghai Key Laboratory of Diseases of Embryo Original Disease, Shanghai 200030, China #Co-first authors: LIU Yulu and WANG Ziqing

Keywords: Assisted reproductive technology Infertility DNA methylation Pregnancy outcomes

DOI: 10.12173/j.issn.1004-5511.202411197

Reference: Liu YL, Wang ZQ, Sui XS, Gao L. Impact of assisted reproductive technology on fetal development[J]. Yixue Xinzhi Zazhi, 2025, 35(10): 1214-1220. DOI: 10.12173/j.issn.1004-5511.202411197. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Assisted reproductive technology (ART) offers infertile patients and couples carrying hereditary diseases the possibility of achieving normal conception and delivering healthy offspring. However, ART is also associated with certain risks of complications. This paper primarily elucidates the potential factors and mechanisms through which ART may induce epigenetic alterations, particularly abnormalities in DNA methylation. It further explores the adverse effects of DNA methylation abnormalities at different genomic loci on fetal development, including an increased incidence of placental abnormalities, a higher risk of preeclampsia, and elevated rates of adverse perinatal outcomes. In addition, several improvement strategies are proposed, such as supplementation with moderate doses of folic acid and the implementation of single-embryo transfer, aiming to reduce ART-related epigenetic abnormalities and the risk of unfavorable pregnancy outcomes.

Full-text
Please download the PDF version to read the full text: download
References

1.Wang Y, Fu Y, Ghazi P, et al. Prevalence of intimate partner violence against infertile women in low-income and middle-income countries: a systematic review and Meta-analysis[J]. Lancet Glob Health, 2022, 10(6): e820-e830. DOI: 10.1016/s2214-109x(22)00098-5.

2.Graham ME, Jelin A, Hoon AH Jr, et al. Assisted reproductive technology: short- and long-term outcomes[J]. Dev Med Child Neurol, 2023, 65(1): 38-49. DOI: 10.1111/dmcn.15332.

3.DeAngelis AM, Martini AE, Owen CM. Assisted reproductive technology and epigenetics[J]. Semin Reprod Med, 2018, 36(3-04): 221-232. DOI: 10.1055/s-0038-1675780.

4.Klibaner-Schiff E, Simonin EM, Akdis CA, et al. Environmental exposures influence multigenerational epigenetic transmission[J]. Clin Epigenetics, 2024, 16(1): 145. DOI: 10.1186/s13148-024-01762-3.

5.Faa G, Manchia M, Fanos V. Assisted reproductive technologies: a new player in the foetal programming of childhood and adult diseases?[J]. Pediatr Rep, 2024, 16(2): 329-338. DOI: 10.3390/pediatric16020029.

6.Sato A, Otsu E, Negishi H, et al. Aberrant DNA methylation of imprinted loci in superovulated oocytes[J]. Hum Reprod, 2007, 22(1): 26-35. DOI: 10.1093/humrep/del316.

7.Laprise SL, Implications of epigenetics and genomic imprinting in assisted reproductive technologies[J]. Mol Reprod Dev, 2009, 76(11): 1006-1018. DOI: 10.1002/mrd.21058.

8.Menezo Y, Clement P, Dale B, et al. Modulating oxidative stress and epigenetic homeostasis in preimplantation IVF embryos[J]. Zygote, 2022, 30(2): 149-158. DOI: 10.1017/s0967199421000356.

9.Greer EL, Shi Y, Histone methylation: a dynamic mark in health, disease and inheritance[J]. Nat Rev Genet, 2012, 13(5): 343-357. DOI: 10.1038/nrg3173.

10.Kovács T, Szabó-Meleg E, Ábrahám IM. Estradiol-induced epigenetically mediated mechanisms and regulation of gene expression[J]. Int J Mol Sci, 2020, 21(9): 3177. DOI: 10.3390/ijms21093177.

11.Xie JK, Wang Q, Chen YH, et al. Effects of multisuperovulation on the transcription and genomic methylation of oocytes and offspring[J]. Clin Epigenetics, 2024, 16(1): 135. DOI: 10.1186/s13148-024-01746-3.

12.Lu X, Mao J, Qian C, et al. High estrogen during ovarian stimulation induced loss of maternal imprinted methylation that is essential for placental development via overexpression of TET2 in mouse oocytes[J]. Cell Commun Signal, 2024, 22(1): 135. DOI: 10.1186/s12964-024-01516-x.

13.Menezo Y, Elder K, Clement P, et al. Biochemical hazards during three phases of assisted reproductive technology: repercussions associated with epigenesis and imprinting[J]. Int J Mol Sci, 2022, 23(16): 8916. DOI: 10.3390/ijms23168916.

14.Wu DF, Yin RX, Deng JL. Homocysteine, hyperhomocysteinemia, and H-type hypertension[J]. Eur J Prev Cardiol, 2024, 31(9): 1092-1103. DOI: 10.1093/eurjpc/zwae022.

15.De Matteis C, Crudele L, Di Buduo E, et al. Hyperhomocysteinemia is linked to MASLD[J]. Eur J Intern Med, 2025, 131: 49-57. DOI: 10.1016/j.ejim.2024.10.014.

16.Hewitson L, Simerly C, Dominko T, et al. Cellular and molecular events after in vitro fertilization and intracytoplasmic sperm injection[J]. Theriogenology, 2000, 53(1): 95-104. DOI: 10.1016/s0093-691x(99)00243-5.

17.Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization[J]. Biol Reprod, 2006, 75(3): 442-451. DOI: 10.1095/biolreprod.106.053223.

18.Wu W, Ji M, Yang J, et al. ART altered DNA methylation of the imprinted gene H19 in fetal tissue after multifetal pregnancy reduction[J]. J Assist Reprod Genet, 2024, 41(11): 3039-3049. DOI: 10.1007/s10815-024-03218-2.

19.Minor A, Chow V, Ma S. Aberrant DNA methylation at imprinted genes in testicular sperm retrieved from men with obstructive azoospermia and undergoing vasectomy reversal[J]. Reproduction, 2011, 141(6): 749-757. DOI: 10.1530/rep-11-0008.

20.Balder P, Jones C, Coward K, et al. Sperm chromatin: evaluation, epigenetic signatures and relevance for embryo development and assisted reproductive technology outcomes[J]. Eur J Cell Biol, 2024, 103(3): 151429. DOI: 10.1016/j.ejcb.2024.151429.

21.Menezo Y, Clément P, Dale B. DNA methylation patterns in the early human embryo and the epigenetic/imprinting problems: a plea for a more careful approach to human assisted reproductive technology (ART)[J]. Int J Mol Sci, 2019, 20(6): 1342. DOI: 10.3390/ijms20061342.

22.Sciorio R, Manna C, Fauque P, et al. Can cryopreservation in assisted reproductive technology (ART) induce epigenetic changes to gametes and embryos?[J]. J Clin Med, 2023, 12(13): 4444. DOI: 10.3390/jcm12134444.

23.Zhao YH, Wang JJ, Zhang PP, et al. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing[J]. Reprod Fertil Dev, 2020, 32(7): 676-689. DOI: 10.1071/rd19234.

24.Saeedinia M, Chen J, Kohandel Gargari O, et al. Epigenetics modification among vitrified oocytes and early embryos derived from them: a narrative review[J]. Cell Mol Biol (Noisy-le-grand), 2024, 70(7): 22-28. DOI: 10.14715/cmb/2024.70.7.4.

25.Håberg SE, Page CM, Lee Y, et al. DNA methylation in newborns conceived by assisted reproductive technology[J]. Nat Commun, 2022, 13(1): 1896. DOI: 10.1038/s41467-022-29540-w.

26.Barberet J, Ducreux B, Guilleman M, et al. DNA methylation profiles after ART during human lifespan: a systematic review and Meta-analysis[J]. Hum Reprod Update, 2022, 28(5): 629-655. DOI: 10.1093/humupd/dmac010.

27.Gonzalez TL, Schaub AM, Lee B, et al. Infertility and treatments used have minimal effects on first-trimester placental DNA methylation and gene expression[J]. Fertil Steril, 2023, 119(2): 301-312. DOI: 10.1016/j.fertnstert.2022.11.010.

28.de Waal E, Mak W, Calhoun S, et al. In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies[J]. Biol Reprod, 2014, 90(2): 22. DOI: 10.1095/biolreprod.113.114785.

29.Tan K, Wang Z, Zhang Z, et al. IVF affects embryonic development in a sex-biased manner in mice[J]. Reproduction, 2016, 151(4): 443-453. DOI: 10.1530/rep-15-0588.

30.Vrooman LA, Rhon-Calderon EA, Suri KV, et al. Placental abnormalities are associated with specific windows of embryo culture in a mouse model[J]. Front Cell Dev Biol, 2022, 10: 884088. DOI: 10.3389/fcell.2022.884088.

31.Manna C, Lacconi V, Rizzo G, et al. Placental dysfunction in assisted reproductive pregnancies: perinatal, neonatal and adult life outcomes[J]. Int J Mol Sci, 2022, 23(2): 659. DOI: 10.3390/ijms23020659.

32.Rana S, Lemoine E, Granger JP, et al. Preeclampsia: pathophysiology, challenges, and perspectives[J]. Circ Res, 2019, 124(7): 1094-1112. DOI: 10.1161/circresaha.118.313276.

33.Gui J, Ling Z, Hou X, et al. In vitro fertilization is associated with the onset and progression of preeclampsia[J]. Placenta, 2020, 89: 50-57. DOI: 10.1016/j.placenta.2019.09.011.

34.Kornfield MS, Gurley SB, Vrooman LA. Increased risk of preeclampsia with assisted reproductive technologies[J]. Curr Hypertens Rep, 2023, 25(9): 251-261. DOI: 10.1007/s11906-023-01250-8.

35.Wisborg K, Ingerslev HJ, Henriksen TB. In vitro fertilization and preterm delivery, low birth weight, and admission to the neonatal intensive care unit: a prospective follow-up study[J]. Fertil Steril, 2010, 94(6): 2102-2106. DOI: 10.1016/j.fertnstert.2010.01.014.

36.Mak W, Kondapalli LA, Celia G, et al. Natural cycle IVF reduces the risk of low birthweight infants compared with conventional stimulated IVF[J]. Hum Reprod, 2016, 31(4): 789-794. DOI: 10.1093/humrep/dew024.

37.Guo Y, Sun Y, Yang H, et al. Comparison of the rates of preterm birth and low birth weight of vanishing twin and primary pregnancies conceived with assisted reproductive technology[J]. J Perinat Med, 2020, 49(1): 50-53. DOI: 10.1515/jpm-2020-0176.

38.Schieve LA, Meikle SF, Ferre C, et al. Low and very low birth weight in infants conceived with use of assisted reproductive technology[J]. N Engl J Med, 2002, 346(10): 731-737. DOI: 10.1056/NEJMoa010806.

39.Pinborg A, Wennerholm UB, Bergh C. Long-term outcomes for children conceived by assisted reproductive technology[J]. Fertil Steril, 2023, 120(3 Pt 1): 449-456. DOI: 10.1016/j.fertnstert. 2023.04.022.

40.Cui L, Zhao M, Zhang Z, et al. Assessment of cardiovascular health of children ages 6 to 10 years conceived by assisted reproductive technology[J]. JAMA Netw Open, 2021, 4(11): e2132602. DOI: 10.1001/jamanetworkopen.2021.32602.

41.Boutet ML, Casals G, Valenzuela-Alcaraz B, et al. Cardiac remodeling in fetuses conceived by ARTs: fresh versus frozen embryo transfer[J]. Hum Reprod, 2021, 36(10): 2697-2708. DOI: 10.1093/humrep/deab159.

42.Yang H, Kuhn C, Kolben T, et al. Early life oxidative stress and long-lasting cardiovascular effects on offspring conceived by assisted reproductive technologies: a review[J]. Int J Mol Sci, 2020, 21(15): 5175. DOI: 10.3390/ijms21155175.

43.Navar AM. The evolving story of triglycerides and coronary heart disease risk[J]. JAMA, 2019, 321(4): 347-349. DOI: 10.1001/jama.2018.20044.

44.Fountain C, Zhang Y, Kissin DM, et al. Association between assisted reproductive technology conception and autism in California, 1997-2007[J]. Am J Public Health, 2015, 105(5): 963-971. DOI: 10.2105/ajph.2014.302383.

45.Zeng Z, Wang Z, Yu P, et al. The association between assisted reproductive technologies and neurodevelopmental disorders in offspring: an overview of current evidence[J]. J Integr Neurosci, 2024, 23(1): 15. DOI: 10.31083/j.jin2301015.

46.Han VX, Patel S, Jones HF, et al. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders[J]. Nat Rev Neurol, 2021, 17(9): 564-579. DOI: 10.1038/s41582-021-00530-8.

47.Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders[J]. Crit Rev Biochem Mol Biol, 2022, 57(1): 73-112. DOI: 10.1080/10409238.2021.1979457.

48.Zhang S, Luo Q, Meng R, et al. Long-term health risk of offspring born from assisted reproductive technologies[J]. J Assist Reprod Genet, 2024, 41(3): 527-550. DOI: 10.1007/s10815-023-02988-5.

49.Gurner KH, Truong TT, Harvey AJ, et al. A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles[J]. Mol Hum Reprod, 2020, 26(12): 953-970. DOI: 10.1093/molehr/gaaa072.

50.Prevention of neural tube defects: results of the medical research council vitamin study. MRC vitamin study research group[J]. Lancet, 1991, 338(8760): 131-137. https://pubmed.ncbi.nlm.nih.gov/1677062/

51.Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation[J]. N Engl J Med, 1992, 327(26): 1832-1835. DOI: 10.1056/nejm199212243272602.

52.Rahimi S, Martel J, Karahan G, et al. Moderate maternal folic acid supplementation ameliorates adverse embryonic and epigenetic outcomes associated with assisted reproduction in a mouse model[J]. Hum Reprod, 2019, 34(5): 851-862. DOI: 10.1093/humrep/dez036.

53.Ihirwe RG, Martel J, Rahimi S, et al. Protective and sex-specific effects of moderate dose folic acid supplementation on the placenta following assisted reproduction in mice[J]. FASEB J, 2023, 37(1): e22677. DOI: 10.1096/fj.202201428R.

54.Practice Committee of the American Society for Reproductive Medicine and the Practice Committee for the Society for Assisted Reproductive Technologies. Guidance on the limits to the number of embryos to transfer: a committee opinion[J]. Fertil Steril, 2021, 116(3): 651-654. DOI: 10.1016/j.fertnstert.2021.06.050.

55.Rao A, Sairam S, Shehata H. Obstetric complications of twin pregnancies[J]. Best Pract Res Clin Obstet Gynaecol, 2004, 18(4): 557-576. DOI: 10.1016/j.bpobgyn.2004.04.007.

56.Castillo CM, Horne G, Fitzgerald CT, et al. The impact of IVF on birthweight from 1991 to 2015: a cross-sectional study[J]. Hum Reprod, 2019, 34(5): 920-931. DOI: 10.1093/humrep/dez025.

57.Kuiper D, Bennema A, la Bastide-van Gemert S, et al. Neurodevelopmental and cardiometabolic outcome in 4-year-old twins and singletons born after IVF[J]. Reprod Biomed Online, 2017, 34(6): 659-667. DOI: 10.1016/j.rbmo.2017.02.015.