Alzheimer's disease (AD) is a kind of neurodegenerative disease that seriously endangers human health. Although there are many hypotheses about the cause and progression of AD, the mechanism of action is still poorly understood. In recent years, ferroptosis, as a unique mode of cell death, has attracted attention due to its iron-dependent lipid peroxidation characteristics, and is widely present in the brain tissue of AD. More and more evidence show that ferroptosis is closely related to the occurrence, development and prognosis of AD. This article reviewed the main mechanism of ferroptosis mediating the occurrence of AD and the research progress in the treatment of AD, aiming to provide a solid theoretical basis for the clinical research of AD and a new strategy of targeted therapy.
HomeArticlesVol 35,2025 No.6Detail
Molecular mechanisms of ferroptosis in Alzheimer's disease and breakthroughs in targeted therapeutics: translational advances from bench to bedside
Published on Jun. 25, 2025Total Views: 73 timesTotal Downloads: 24 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Cummings J, Lee G, Nahed P, et al. Alzheimer's disease drug development pipeline: 2022[J]. Alzheimers Dement (N Y), 2022, 8(1): e12295. DOI: 10.1002/trc2.12295.
2.Tatulian SA. Challenges and hopes for Alzheimer's disease[J]. Drug Discov Today, 2022, 27(4): 1027-1043. DOI: 10.1016/j.drudis.2022.01.016.
3.Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284): 1577-1590. DOI: 10.1016/S0140-6736(20)32205-4.
4.Andrade-Guerrero J, Santiago-Balmaseda A, Jeronimo-Aguilar P, et al. Alzheimer's disease: an updated overview of its genetics[J]. Int J Mol Sci, 2023, 24(4): 3754. DOI: 10.3390/ijms24043754.
5.Fontana IC, Zimmer AR, Rocha AS, et al. Amyloid-beta oligomers in cellular models of Alzheimer's disease[J]. J Neurochem, 2020, 155(4): 348-369. DOI: 10.1111/jnc.15030.
6.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
7.Weiland A, Wang Y, Wu W, et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56(7): 4880-4893. DOI: 10.1007/s12035-018-1403-3.
8.Zille M, Karuppagounder SS, Chen Y, et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis[J]. Stroke, 2017, 48(4): 1033-1043. DOI: 10.1161/STROKEAHA.116.015609.
9.Gammella E, Buratti P, Cairo G, et al. The transferrin receptor: the cellular iron gate[J]. Metallomics, 2017, 9(10): 1367-1375. DOI: 10.1039/c7mt00143f.
10.Nemeth E, Ganz T. Hepcidin-ferroportin interaction controls systemic iron homeostasis[J]. Int J Mol Sci, 2021, 22(12): 6493. DOI: 10.3390/ijms22126493.
11.Kuhn LC. Iron regulatory proteins and their role in controlling iron metabolism[J]. Metallomics, 2015, 7(2): 232-243. DOI: 10.1039/c4mt00164h.
12.Wang CY, Jenkitkasemwong S, Duarte S, et al. ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading[J]. J Biol Chem, 2012, 287(41): 34032-34043. DOI: 10.1074/jbc.M112.367284.
13.Jakaria M, Belaidi AA, Bush AI, et al. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease[J]. J Neurochem, 2021, 159(5): 804-825. DOI: 10.1111/jnc.15519.
14.Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113(34): E4966-E4975. DOI: 10.1073/pnas.1603244113.
15.Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. DOI: 10.1038/nchembio.2238.
16.Riegman M, Sagie L, Galed C, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture[J]. Nat Cell Biol, 2020, 22(9): 1042-1048. DOI: 10.1038/s41556-020-0565-1.
17.Belaidi AA, Masaldan S, Southon A, et al. Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy[J]. Mol Psychiatry, 2024, 29(2): 211-220. DOI: 10.1038/s41380-022-01568-w.
18.Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24(1): 449. DOI: 10.3390/ijms24010449.
19.Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J, 2022, 289(22): 7038-7050. DOI: 10.1111/febs.16059.
20.Feng L, Sun J, Xia L, et al. Ferroptosis mechanism and Alzheimer's disease[J]. Neural Regen Res, 2024, 19(8): 1741-1750. DOI: 10.4103/1673-5374.389362.
21.Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. DOI: 10.1038/s41419-020-2298-2.
22.Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2): 662-675. DOI: 10.1038/s41418-019-0380-z.
23.Hayano M, Yang WS, Corn CK, et al. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation[J]. Cell Death Differ, 2016, 23(2): 270-278. DOI: 10.1038/cdd.2015.93.
24.Jin DY, Chen X, Liu Y, et al. A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase[J]. Nat Commun, 2023, 14(1): 828. DOI: 10.1038/s41467-023-36446-8.
25.Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2.
26.Lei J, Chen Z, Song S, et al. Insight into the role of ferroptosis in non-neoplastic neurological diseases[J]. Front Cell Neurosci, 2020, 14: 231. DOI: 10.3389/fncel.2020.00231.
27.Ma J, Liu J, Chen S, et al. Understanding the mechanism of ferroptosis in neurodegenerative diseases[J]. Front Biosci (Landmark Ed), 2024, 29(8): 291. DOI: 10.31083/j.fbl2908291.
28.Huang L, McClatchy DB, Maher P, et al. Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death[J]. Cell Death Dis, 2020, 11(10): 828. DOI: 10.1038/s41419-020-03020-9.
29.张效源, 马子腾, 贾云芳, 等. 靶向敲低腺苷转运体1通过降低炎症反应对阿尔茨海默病的保护作用研究[J]. 陆军军医大学学报, 2024, 46(23): 2588-2598. [Zhang XY, Ma ZT, Jia YF, et al. Knockdown of equilibrative nucleotide transporter 1 protects against Alzheimer's disease by reducing inflammatory response[J]. Journal of Army Medical University, 2024, 46(23): 2588-2598.] DOI: 10.16016/j.2097-0927.202403052.
30.Wang S, Jiang Y, Liu Y, et al. Ferroptosis promotes microtubule-associated protein tau aggregation via GSK-3beta activation and proteasome inhibition[J]. Mol Neurobiol, 2022, 59(3): 1486-1501. DOI: 10.1007/s12035-022-02731-8.
31.Wang L, Li N, Shi FX, et al. Upregulation of AMPK ameliorates Alzheimer's disease-like tau pathology and memory impairment[J]. Mol Neurobiol, 2020, 57(8): 3349-3361. DOI: 10.1007/s12035-020-01955-w.
32.Zhang L, Liu W, Liu F, et al. IMCA induces ferroptosis mediated by SLC7A11 through the AMPK/mTOR pathway in colorectal cancer[J]. Oxid Med Cell Longev, 2020, 2020: 1675613. DOI: 10.1155/2020/1675613.
33.Luengo E, Buendia I, Fernandez-Mendivil C, et al. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux[J]. J Pineal Res, 2019, 67(1): e12578. DOI: 10.1111/jpi.12578.
34.Park MW, Cha HW, Kim J, et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases[J]. Redox Biol, 2021, 41: 101947. DOI: 10.1016/j.redox.2021.101947.
35.Zhang YH, Wang DW, Xu SF, et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice[J]. Redox Biol, 2018, 14: 535-548. DOI: 10.1016/j.redox.2017.11.001.
36.Youssef M, Mohamed TM, Bakry AA, et al. Synergistic effect of spermidine and ciprofloxacin against Alzheimer's disease in male rat via ferroptosis modulation[J]. Int J Biol Macromol, 2024, 263(Pt 2): 130387. DOI: 10.1016/j.ijbiomac.2024.130387.
37.Ward RJ, Zucca FA, Duyn JH, et al. The role of iron in brain ageing and neurodegenerative disorders[J]. Lancet Neurol, 2014, 13(10): 1045-1060. DOI: 10.1016/S1474-4422(14)70117-6.
38.Mezzanotte M, Stanga S. Brain iron dyshomeostasis and ferroptosis in Alzheimer's disease pathophysiology: two faces of the same coin[J]. Aging Dis, 2024. DOI: 10.14336/AD.2024.0094.
39.Streit WJ, Phan L, Bechmann I. Ferroptosis and pathogenesis of neuritic plaques in Alzheimer disease[J]. Pharmacol Rev, 2025, 77(1): 100005. DOI: 10.1124/pharmrev.123.000823.
40.Wu Y, Torabi SF, Lake RJ, et al. Simultaneous Fe(2+)/Fe(3+) imaging shows Fe(3+) over Fe(2+) enrichment in Alzheimer's disease mouse brain[J]. Sci Adv, 2023, 9(16): e7622. DOI: 10.1126/sciadv.ade7622.
41.Prasanna G, Jing P. Self-assembly of N-terminal Alzheimer's beta-amyloid and its inhibition[J]. Biochem Biophys Res Commun, 2021, 534: 950-956. DOI: 10.1016/j.bbrc.2020.10.065.
42.Bao WD, Pang P, Zhou XT, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease[J]. Cell Death Differ, 2021, 28(5): 1548-1562. DOI: 10.1038/s41418-020-00685-9.
43.Wang XL, Zhai RQ, Li ZM, et al. Constructing a prognostic risk model for Alzheimer's disease based on ferroptosis[J]. Front Aging Neurosci, 2023, 15: 1168840. DOI: 10.3389/fnagi.2023.1168840.
44.Ayton S, Portbury S, Kalinowski P, et al. Regional brain iron associated with deterioration in Alzheimer's disease: a large cohort study and theoretical significance[J]. Alzheimers Dement, 2021, 17(7): 1244-1256. DOI: 10.1002/alz.12282.
45.Zhang N, Yu X, Xie J, et al. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases[J]. Mol Neurobiol, 2021, 58(6): 2812-2823. DOI: 10.1007/s12035-020-02277-7.
46.Peng W, Chung KB, Lawrence BP, et al. DMT1 knockout abolishes ferroptosis induced mitochondrial dysfunction in C. elegans amyloid beta proteotoxicity[J]. Free Radic Biol Med, 2024, 224: 785-796. DOI: 10.1016/j.freeradbiomed.2024.09.034.
47.Smith MA, Zhu X, Tabaton M, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment[J]. J Alzheimers Dis, 2010, 19(1): 363-372. DOI: 10.3233/JAD-2010-1239.
48.Spotorno N, Acosta-Cabronero J, Stomrud E, et al. Relationship between cortical iron and tau aggregation in Alzheimer's disease[J]. Brain, 2020, 143(5): 1341-1349. DOI: 10.1093/brain/awaa089.
49.Peng Y, Chang X, Lang M. Iron homeostasis disorder and Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(22): 12442. DOI: 10.3390/ijms222212442.
50.Gong NJ, Dibb R, Bulk M, et al. Imaging beta amyloid aggregation and iron accumulation in Alzheimer's Disease using quantitative susceptibility mapping MRI[J]. Neuroimage, 2019, 191: 176-185. DOI: 10.1016/j.neuroimage.2019.02.019.
51.Raven EP, Lu PH, Tishler TA, et al. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging[J]. J Alzheimers Dis, 2013, 37(1): 127-136. DOI: 10.3233/JAD-130209.
52.Chen Z, Zheng N, Wang F, et al. The role of ferritinophagy and ferroptosis in Alzheimer's disease[J]. Brain Res, 2025, 1850: 149340. DOI: 10.1016/j.brainres.2024.149340.
53.Maimaiti Y, Su T, Zhang Z, et al. NOX4-mediated astrocyte ferroptosis in Alzheimer's disease[J]. Cell Biosci, 2024, 14(1): 88. DOI: 10.1186/s13578-024-01266-w.
54.Li Z, Lu Y, Zhen Y, et al. Avicularin inhibits ferroptosis and improves cognitive impairments in Alzheimer's disease by modulating the NOX4/Nrf2 axis[J]. Phytomedicine, 2024, 135: 156209. DOI: 10.1016/j.phymed.2024.156209.
55.Peng W, Zhu Z, Yang Y, et al. N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells[J]. Brain Res Bull, 2021, 174: 250-259. DOI: 10.1016/j.brainresbull.2021.06.014.
56.Ferre-Gonzalez L, Pena-Bautista C, Baquero M, et al. Assessment of lipid peroxidation in Alzheimer's disease differential diagnosis and prognosis[J]. Antioxidants (Basel), 2022, 11(3): 551. DOI: 10.3390/antiox11030551.
57.Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. DOI: 10.1038/s41392-020-00428-9.
58.Ates G, Goldberg J, Currais A, et al. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer's disease[J]. Redox Biol, 2020, 36: 101648. DOI: 10.1016/j.redox.2020.101648.
59.Guo Y, Zhao J, Liu X, et al. Ghrelin induces ferroptosis resistance and M2 polarization of microglia to alleviate neuroinflammation and cognitive impairment in Alzheimer's disease[J]. J Neuroimmune Pharmacol, 2025, 20(1): 6. DOI: 10.1007/s11481-024-10165-3.
60.Hacioglu C, Kar F, Ozbayer C, et al. Ex vivo investigation of betaine and boric acid function as preprotective agents on rat synaptosomes to be treated with Aβ (1-42)[J]. Environ Toxicol, 2024, 39(4): 2138-2149. DOI: 10.1002/tox.24098.
61.Plascencia-Villa G, Perry G. Preventive and therapeutic strategies in Alzheimer's disease: focus on oxidative stress, redox metals, and ferroptosis[J]. Antioxid Redox Signal, 2021, 34(8): 591-610. DOI: 10.1089/ars.2020.8134.
62.Dang Y, He Q, Yang S, et al. FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer's disease: evidence from single-cell transcriptomic analysis[J]. Pharmaceuticals (Basel), 2022, 15(10): 1177. DOI: 10.3390/ph15101177.
63.Dar NJ, John U, Bano N, et al. Oxytosis/Ferroptosis in neurodegeneration: the underlying role of master regulator glutathione peroxidase 4 (GPX4)[J]. Mol Neurobiol, 2024, 61(3): 1507-1526. DOI: 10.1007/s12035-023-03646-8.
64.Zhang Y, Swanda RV, Nie L, et al. mTORC1 couples cyst(e) ine availability with GPX4 protein synthesis and ferroptosis regulation[J]. Nat Commun, 2021, 12(1): 1589. DOI: 10.1038/s41467-021-21841-w.
65.Charisis S, Ntanasi E, Yannakoulia M, et al. Plasma GSH levels and Alzheimer's disease. A prospective approach.: Results from the HELIAD study[J]. Free Radic Biol Med, 2021, 162: 274-282. DOI: 10.1016/j.freeradbiomed.2020.10.027.
66.Haddad M, Hervé V, Ben KM, et al. Glutathione: an old and small molecule with great functions and new applications in the brain and in Alzheimer's disease[J]. Antioxid Redox Signal, 2021, 35(4): 270-292. DOI: 10.1089/ars.2020.8129.
67.Hambright WS, Fonseca RS, Chen L, et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J]. Redox Biol, 2017, 12: 8-17. DOI: 10.1016/j.redox.2017.01.021.
68.Farr AC, Xiong MP. Challenges and opportunities of deferoxamine delivery for treatment of Alzheimer's disease, Parkinson's disease, and intracerebral hemorrhage[J]. Mol Pharm, 2021, 18(2): 593-609. DOI: 10.1021/acs.molpharmaceut.0c00474.
69.Zhang Y, Guo T, Ding Y, et al. Taurine and deferiprone against Al-linked apoptosis in rat hippocampus[J]. J Trace Elem Med Biol, 2023, 76: 127113. DOI: 10.1016/j.jtemb.2022.127113.
70.Lana JV, Rios A, Takeyama R, et al. Nebulized glutathione as a key antioxidant for the treatment of oxidative stress in neurodegenerative conditions[J]. Nutrients, 2024, 16(15): 2476. DOI: 10.3390/nu16152476.
71.Liu XX, Wu PF, Liu YZ, et al. Association between serum vitamins and the risk of Alzheimer's disease in Chinese population[J]. J Alzheimers Dis, 2022, 85(2): 829-836. DOI: 10.3233/JAD-215104.
72.Zhao D, Yang K, Guo H, et al. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: a review[J]. Biomed Pharmacother, 2023, 164: 114312. DOI: 10.1016/j.biopha.2023.114312.
73.Tang Z, Chen Z, Guo M, et al. NRF2 deficiency promotes ferroptosis of astrocytes mediated by oxidative stress in Alzheimer's disease[J]. Mol Neurobiol, 2024, 61(10): 7517-7533. DOI: 10.1007/s12035-024-04023-9.
74.Shao L, Dong C, Geng D, et al. Ginkgolide B protects against cognitive impairment in senescence-accelerated P8 mice by mitigating oxidative stress, inflammation and ferroptosis[J]. Biochem Biophys Res Commun, 2021, 572: 7-14. DOI: 10.1016/j.bbrc.2021.07.081.
75.Li X, Chen J, Feng W, et al. Berberine ameliorates iron levels and ferroptosis in the brain of 3 x Tg-AD mice[J]. Phytomedicine, 2023, 118: 154962. DOI: 10.1016/j.phymed.2023.154962.
76.Deng PX, Silva M, Yang N, et al. Artemisinin inhibits neuronal ferroptosis in Alzheimer's disease models by targeting KEAP1[J]. Acta Pharmacol Sin, 2025, 46(2): 326-337. DOI: 10.1038/s41401-024-01378-6.
77.Goujon M, Liang Z, Soriano-Castell D, et al. The neuroprotective flavonoids sterubin and fisetin maintain mitochondrial health under Oxytotic/ferroptotic stress and improve bioenergetic efficiency in HT22 neuronal cells[J]. Antioxidants (Basel), 2024, 13(4): 460. DOI: 10.3390/antiox13040460.
78.Fan YG, Ge RL, Ren H, et al. Astrocyte-derived lactoferrin inhibits neuronal ferroptosis by reducing iron content and GPX4 degradation in APP/PS1 transgenic mice[J]. Pharmacol Res, 2024, 209: 107404. DOI: 10.1016/j.phrs.2024.107404.
79.Ma J, Zhang J, Ou Z, et al. Chronic noise exposure induces Alzheimer's disease-like neuropathology and cognitive impairment via ferroptosis in rat hippocampus[J]. Environ Health Prev Med, 2024, 29: 50. DOI: 10.1265/ehpm.24-00126.
80.Yong Y, Yan L, Wei J, et al. A novel ferroptosis inhibitor, Thonningianin A, improves Alzheimer's disease by activating GPX4[J]. Theranostics, 2024, 14(16): 6161-6184. DOI: 10.7150/thno.98172.
81.Baruah P, Moorthy H, Ramesh M, et al. A natural polyphenol activates and enhances GPX4 to mitigate amyloid-beta induced ferroptosis in Alzheimer's disease[J]. Chem Sci, 2023, 14(35): 9427-9438. DOI: 10.1039/d3sc02350h.
82.Liu Y, Zhao D, Yang F, et al. In situ self-assembled phytopolyphenol-coordinated intelligent nanotherapeutics for multipronged management of ferroptosis-driven Alzheimer's disease[J]. ACS Nano, 2024, 18(11): 7890-7906. DOI: 10.1021/acsnano.3c09286.
83.Wang J, Wang Z, Li Y, et al. Blood brain barrier-targeted delivery of double selenium nanospheres ameliorates neural ferroptosis in Alzheimer's disease[J]. Biomaterials, 2023, 302: 122359. DOI: 10.1016/j.biomaterials.2023.122359.
84.Zha X, Liu X, Wei M, et al. Microbiota-derived lysophosphatidylcholine alleviates Alzheimer's disease pathology via suppressing ferroptosis[J]. Cell Metab, 2025, 37(1): 169-186. DOI: 10.1016/j.cmet.2024.10.006.
85.Tan L, Xie J, Liao C, et al. Tetrahedral framework nucleic acids inhibit Aβ-mediated ferroptosis and ameliorate cognitive and synaptic impairments in Alzheimer's disease[J]. J Nanobiotechnology, 2024, 22(1): 682. DOI: 10.1186/s12951-024-02963-x.
86.Hao Z, Guo X, Wu J, et al. Revisiting the benefits of exercise for Alzheimer's disease through the lens of ferroptosis: a new perspective[J]. Aging Dis, 2024. DOI: 10.14336/AD.2024.1560.
87.Moorthy H, Ramesh M, Padhi D, et al. Polycatechols inhibit ferroptosis and modulate tau liquid-liquid phase separation to mitigate Alzheimer's disease[J]. Mater Horiz, 2024, 11(13): 3082-3089. DOI: 10.1039/d4mh00023d.
88.Zhang ZH, Wu QY, Chen C, et al. Comparison of the effects of selenomethionine and selenium-enriched yeast in the triple-transgenic mouse model of Alzheimer's disease[J]. Food Funct, 2018, 9(7): 3965-3973. DOI: 10.1039/c7fo02063e.
89.Vulin M, Zhong Y, Maloney BJ, et al. Proteasome inhibition protects blood-brain barrier P-glycoprotein and lowers Aβ brain levels in an Alzheimer's disease model[J]. Fluids Barriers CNS, 2023, 20(1): 70. DOI: 10.1186/s12987-023-00470-z.
Popular Papers
-
Prediction and analysis of disease burden of mental disorders in China from 1990 to 2021
Jan. 25, 20254040
-
Analysis of the effect of dietary factors on irritable bowel syndrome by Mendelian randomized method
Apr. 25, 20252988
-
Construction of a depression risk prediction model for elderly individuals living alone with chronic diseases in China
Dec. 28, 20242883
-
The analysis of disease burden of benign prostatic hyperplasia in China from 1990 to 2021
Dec. 28, 20242768
-
Prevalence and influencing factors of non-suicidal self-injurious behaviour among Chinese college students: a Meta-analysis
Jan. 25, 20252569
-
Construction of a predictive model for the risk of aspiration in enteral nutrition patients in ICU
Jan. 25, 20252521
-
Methodology for evidence-based urology——evidence classification and retrieval
Jan. 25, 20252518
-
Research progress of chlorhexidine oral care solution for prevention of ventilator-associated pneumonia
Jan. 25, 20252381