欢迎访问中南医学期刊社系列期刊网站!

  • 中国科技核心期刊

    中国科技论文统计源期刊

    DOAJ数据库收录期刊

    CAS数据库收录期刊

    RCCSE中国核心学术期刊

    Google Scholar索引期刊

    百度学术索引期刊

  • 湖北省科协科技创新源泉工程优秀科技期刊

    湖北省期刊发展扶持资金资助期刊

    《中国学术期刊影响因子年报》统计源期刊

    CACJ中国应用型核心期刊

    中国核心期刊(遴选)数据库收录期刊

    中国学术期刊网络出版总库收录期刊

    中文科技期刊数据库收录期刊

虚拟现实技术在老年衰弱康复中的应用:文献计量与可视化分析

发表时间:2024年06月01日阅读量:1519次下载量:492次下载手机版

作者: 周慧 1 陈硕 2 瓮长水 3, 4 蒋天裕 3, 4 张驰 1 张丽 3, 4

作者单位: 1. 西南医科大学附属医院康复医学科(四川泸州 646699) 2. 解放军总医院研究生院图书馆(北京 100853) 3. 解放军总医院第二医学中心康复医学科(北京 100853) 4. 国家老年疾病临床医学研究中心(北京 100853)

关键词: 虚拟现实 衰弱 康复 老年人 Citespace 可视化分析

DOI: 10.12173/j.issn.1004-5511.202401114

基金项目: 基金项目: 首都卫生发展科研专项项目(首发2024-2-5031);国家老年疾病临床医学研究中心多中心临床研究项目(NCRCG-PLAGH-2023007);山东省重点研发计划“虚拟现实科技示范工程”子课题(2022SFGC0601)

引用格式:周慧, 陈硕, 瓮长水, 蒋天裕,张驰, 张丽. 虚拟现实技术在老年衰弱康复中的应用:文献计量与可视化分析[J]. 医学新知, 2024, 34(5): 554-563. DOI: 10.12173/j.issn.1004-5511.202401114

Zhou H, Chen S, Weng CS, Jiang TY, Zhang C, Zhang L. Application of virtual reality technology in elderly frailty rehabilitation: a bibliometric and visual analysis[J]. Yixue Xinzhi Zazhi, 2024, 34(5): 554-563. DOI: 10.12173/j.issn.1004-5511.202401114.[Article in Chinese]

摘要|Abstract

目的  分析虚拟现实(virtual reality, VR)技术应用于老年衰弱康复的研究现状、热点及前沿。

方法  计算机检索Web of Science核心合集和Scopus数据库中VR技术应用于老年衰弱康复的相关综述或论著,检索时限为1996年1月—2023年12月。采用Citespace 6.2.R3 Advanced软件分析作者、国家或地区和关键词,并对关键词进行聚类分析。

结果  共纳入653 篇文献。VR技术在老年衰弱康复的应用相关研究年出版数整体呈上升趋势,2022年达到顶峰。Riva G是该领域发文量最多的学者。美国是该领域最有影响力的国家,发文量最多、中心性最高,中国目前发文量居第二位、中心性排名第三位。频次排名靠前的关键词为VR技术、衰弱人群、康复;中心性排名靠前的关键词为衰弱人群、VR技术、老年人居家环境管理;爆发强度排名靠前的关键词为VR技术、运动表现、老年人居家环境管理;排名靠前的关键词聚类群为衰弱人群、运动康复、患者满意度。

结论  VR技术应用于老年衰弱康复的相关研究整体呈上升趋势,相关研究热点与前沿集中于衰弱老人的跌倒预防和居家环境管理等,后续可加强相关临床研究,为延缓和改善老年人衰弱提供更有效的干预方法。

全文|Full-text

近年来,中国老龄化进程不断加快[1],老年人衰弱及其造成的负担也逐渐引起重视。衰弱是力量降低和多器官系统生理储备下降,这一状态将增加个体的依赖性、脆弱性及对死亡的易感性[2]。衰弱老年人的肌肉骨骼功能、平衡、步行和认知能力下降,容易引发一系列不良后果,如跌倒、残疾、死亡等,大大降低了老年人的寿命和生活质量[2-4]。康复训练已被证实可有效改善和延缓老年衰弱,但这些常规干预措施往往内容枯燥,无法确保治疗的连续性和依从性,迫切需要探索创新性干预策略 [5-7]。虚拟现实(virtual reality,VR)是利用计算机系统、感觉反馈装置及建模技术生成可直接施加于训练者的视觉、听觉和触觉感受,并在专业装备的辅助下,刺激人体对虚拟的环境或物体进行交互控制的技术[5, 8-9]。目前,VR技术也逐渐应用于老年衰弱康复,包括躯体功能训练、认知功能训练、社交互动、情绪管理和放松以及制定个性化康复方案[10-12]。基于VR的康复治疗技术可以为受试者提供持续参与训练的机会,因此有望成为延缓和改善老年衰弱的一种更有吸引力的选择[5, 13-14]。作为一项新型智能化技术,VR在老年康复中的应用尚属较新领域,尽管有研究 [15]对VR技术在评估及改善老年衰弱方面的应用情况进行了综述,但该研究仅概况性总结了相关内容,未提供定量信息。本研究从发文量、作者、国家或地区以及关键词的角度对VR在老年衰弱康复应用的相关研究进行定量、可视化分析,以揭示当下研究的热点及前沿问题,为后续相关研究提供参考。

1 资料和方法

1.1 纳入与排除标准

纳入标准:①研究对象为年龄≥60岁的衰弱老人;②研究内容涉及VR技术应用于老年衰弱康复;③文献类型为综述、论著;④发表语言为英文。排除标准:①研究对象患 有阿尔茨海默病及其它类型痴呆 ;②会议摘要、案例报告、硕士或博士论文;③资料信息不全、无法获取全文或重复发表的文献。

1.2 文献检索

计算机检索Web of Science核心合集和Scopus数据库。选择检索字段为主题或关键词,利用布尔逻辑运算符构建检索式,见框1和框2。检索时限为1996年1月至2023年12月,并手动筛选文章类型为论著和综述。

  • 框图1 Web of Science检索策略
    Box1.Search strategy of Web of Science

  • 框图2 Scopus检索策略
    Box2.Search strategy of Scopus

1.3 文献筛选与资料提取

使用Citespace 软件进行文献去重,然后2名研究者根据纳排标准对检索到的文献标题、摘要和全文进行逐步阅读和筛选,如有分歧与第3名研究者协商。对纳入的文献进行资料提取,提取内容包括作者姓名、所在国家或地区、发表年份、文献类型、关键词等。

1.4 统计学分析

使用Citespace 6.2.R3软件进行分析,将时间跨度设置为1996年至2023年,时间分区为1年,阈值选择标准设置为Top N=50,网络裁剪方式选择Pathfinder和Pruning the merged network算法,分别对纳入文献的作者、国家或地区、关键词进行分析。对关键词进行聚类分析,使用对数似然率(Log-likelihood rate,LLR)提取聚类标签词,标签词的LLR值越大,则该词在聚类中越具有代表性;使用聚类规模反映聚类包含的关键词节点数,节点数越多,则该聚类越大;使用聚类轮廓值(Q)反映聚类的合理程度,轮廓值越接近1,则聚类越合理。

2 结果

2.1 一般情况

Web of Science核心合集和Scopus数据库分别检索获得1 007篇和2 534篇文献,根据纳入排除标准逐步筛选后,最终纳入653篇VR技术应用于老年衰弱康复的相关文献,其中论著558 篇(85.5%)、综述95篇(14.5%)。

2.2 文献年载文量分析

对纳入文献年载文量进行分析,结果显示,VR技术应用于老年衰弱康复领域发表文献的数量整体呈上升趋势,可分为三个阶段:第一阶段(1996—2010年):研究起步阶段,发文量偏少;第二阶段(2011—2017年):稳定发展阶段,发文量以稳定的速度增长;第三阶段(2018—2023 年):快速发展阶段,虽然2023年发文量有所回落,但此阶段发表文献的数量整体上仍以较快的速度增长并表现出较高的水平,2022年达到顶峰116篇,见图1。

  • 图1 VR技术应用于老年衰弱康复领域文献的年发文趋势
    Figure1.Annual publication trends of the application of VR to the elderly frailty rehabilitation

2.3 文献发表作者分析

使用Citespace对文献的作者进行可视化分析,结果显示,共生成284个节点、301条连线,网络密度为0.007,见图2。意大利学者Riva G发文量最多(6篇),其次是 Cipresso P(4篇)、Pedroli E(4篇);Riva G与Pedroli E等作者形成了整个网络中最大的合作群;Sdravopoulou K、Dolores hidalgo-ariza M等作者形成了第二大合作群,见图2和表1。

  • 图2 VR技术应用于老年衰弱康复领域文献的作者合作分析
    Figure2.Author collaboration analysis of the application of VR to the elderly frailty rehabilitation

  • 表格1 VR技术应用于老年衰弱康复领域发文量排名前十的作者
    Table1.Top 10 authors with publications in the field of VR applied to the elderly frailty rehabilitation
    注:年份指该作者首次发表相关文献的时间。

2.4 文献发表国家或地区分析

使用Citespace 对文献的作者所在国家或地区进行可视化分析,结果显示,共生成65个节点、253条连线,网络密度为0.121,见图3。发文量排名前三的是美国(106篇)、中国(94篇)、意大利(50篇);中心性排名前三的是美国(0.55)、英国(0.36)、中国(0.22),见表2。

  • 图3 VR技术应用于老年衰弱康复领域国家或地区合作分析
    Figure3.Analysis of national or regional cooperation in the application of VR to the elderly frailty Rehabilitation

  • 表格2 VR技术应用于老年衰弱康复领域发文量、中心性排名前十的国家或地区
    Table2.Top 10 countries or regions in publication number and centrality of VR applied to the elderly frailty rehabilitation
    注:中心性反映国家在该领域的影响力,数值越高,影响力越大。

2.5 文献关键词共现及聚类分析

使用Citespace对文献的关键词进行可视化分析,结果显示,共生成316个节点、620条连线,网络密度为0.012,见图4。VR技术应用于老年衰弱康复相关研究中出现频次排名前3的关键词是VR技术、衰弱人群、康复;中心性排名前3的关键词是衰弱人群、VR技术、老年人居家环境管理,见图4和表3。短时间内爆发强度最高的前3个关键词为VR技术、运动表现、老年人居家环境管理,见图5。

选择关键词作为标签进行聚类分析,结果显示,模块度Q为0.851,轮廓S为0.902,聚类网络较明显和合理。本研究共得到14个聚类群,见图6。排名前6的聚类群为:衰弱人群(LLR值12.09)、运动康复(LLR值12.85)、患者满意度(LLR值7.29)、躯体功能训练(LLR值12.81)、混合现实(LLR值16.73)、情绪幸福感(LLR值11.63),见表4。

  • 图4 VR技术应用于老年衰弱康复领域的关键词共现分析
    Figure4.Keyword co-occurrence analysis for VR applied to the elderly frailty rehabilitation

  • 表格3 VR技术用于老年衰弱康复领域频次、中心性排名前十的关键词
    Table3.Top 10 keywords for VR applied to the elderly frailty rehabilitation ranked by frequency and centrality
    注:中心性反映关键词在该领域的影响力,数值越高,影响力越大。

  • 图5 VR技术应用于老年衰弱康复领域爆发强度排名前六的关键词
    Figure5.Top 6 keywords with the highest burst intensity for VR applied to the elderly frailty rehabilitation

  • 图6 VR技术应用于老年衰弱康复领域的关键词聚类分析
    Figure6.Keyword clustering analysis for VR applied to the elderly frailty rehabilitation

  • 表格4 VR技术应用于老年衰弱康复领域关键词聚类排名前六的群
    Table4.Top 6 largest keyword clusters for VR applied to the elderly frailty rehabilitation
    注:平均年份代表聚类内关键词在文献中首次出现的时间。

3 讨论

本研究使用Citespace分析了VR技术应用于老年衰弱康复领域的相关文献,研究结果显示,相关研究年发文量整体呈迅速上升趋势,表明越来越多的研究者开始关注并探索应用VR技术延缓或逆转老年衰弱。大部分研究者均以团队的形式进行研究,但其合作的广度和深度有待加强。意大利Riva G团队在文献的发表数量上具有代表性,在该领域处于核心地位,该团队重点关注与老年衰弱康复相关VR技术的研发与应用[16-18],结果表明基于VR技术的训练系统在受试者中具有良好的易用性[17]。本研究结果同时显示,美国是VR技术应用于老年衰弱康复领域的主要研究国家,中国发表的文献数量居第二位,中心性排名居第三位,表明中国在该领域已处于比较重要的地位。

频次和中心性排名较高的关键词可以反映研究热点,根据分析结果,本研究推断出以下3个研究热点:①衰弱老年人跌倒预防。衰弱老年人的跌倒风险增加[19-21],以往研究表明,运动训练能够改善衰弱老年人平衡能力,但其作为单一干预措施,未能降低跌倒的风险[22-24]。研究证明,基于VR技术的双任务康复方案可以有效预防衰弱老年人跌倒,该方案可以改善平衡以及平衡相关的认知觉,以减少衰弱患者跌倒的危险[25- 27],同时增加受试者间的社交互动,提供情绪幸福感,降低了老年衰弱人群的孤独抑郁风险[28-30]。②用户体验。受试者在VR环境中的体验感,对其是否能完成康复训练具有很大影响[31-33]。传统康复治疗枯燥重复,患者常难以坚持训练[34-36],而VR技术可以搭建多样、个性化的虚拟训练场景,为患者提供视、触、嗅、听、导航等丰富的感官体验,从而有效提高治疗趣味性和依从性[37-39]。③运动康复训练。运动康复训练与VR运动都可以对老年人的躯体和认知状况产生积极影响[40-43],但老年人肌肉骨骼能力下降,传统运动康复发生意外的风险较大[44-46]。VR系统包含多种传感器和生物反馈装置,允许根据患者的承受能力调整训练强度,大大提高了训练过程中的安全性[44, 47-48]。

短时间内爆发强度高的突发词可以反映新兴的研究前沿,根据分析结果,本研究推断出以下3个研究前沿:①居家环境管理。老年衰弱患者肌肉骨骼功能和平衡能力均下降,可能出现家居环境不适应的问题[49-51],可以通过家居智能设备和家庭交互式控制器等居家环境管理实现环境辅助生活,以帮助老年人完成日常生活活动[52-54]。②认知衰弱康复。认知衰弱是一系列以认知障碍为特征,但未达到痴呆标准的临床症状[55-57]。有研究人员提出了基于平板电脑的应用程序,帮助衰弱人群进行家庭认知康复,提高空间记忆力、注意力,改善执行功能[49, 58-59]。结果表明,经过一段时间的训练后,衰弱患者的独立自主能力得到大幅提升,但基于VR技术的家庭康复训练仍需要升级[58]。③易用性。易用性是设计医学虚拟系统时必须考虑的一个关键因素[31, 60-61]。有研究分析了VR技术在临床应用方面的易用性,结果表明,尽管有一些小的交互问题,VR技术仍在老年人群中显示出良好的易用性和接受性[62]。未来仍需要大样本的研究以证实VR技术的易用性[63]。

本研究存在一定的局限性。由于Citespace软件的局限性,无法同时进行中文和英文文献的分析,本文仅纳入Web of Science核心合集和Scopus数据库的英文文献,但基于对现有文献的全面检索,本研究发现目前该领域发表的研究主要集中于英文文献,仅有一篇中文综述[15],因此,本研究结果能够较好的保证全面性和客观性。

综上所述,VR技术应用于老年衰弱康复的研究整体呈上升趋势,衰弱老人的跌倒预防、用户体验、运动康复训练、居家环境管理、认知衰弱康复和易用性是研究的热点和前沿,后续可加强相关临床研究,为延缓和改善老年人衰弱提供更有效的干预方法,以提高老年人的生活质量。

参考文献|References

1.杨善岚, 涂嘉欣, 朱祥, 等. 中国老年人群伤害死亡率的Meta分析[J]. 中国循证医学杂志, 2022, 22(12): 1393-1399. [Yang SL, Tu JX, Zhu X, et al. Older adult injury mortality in China: a Meta-analysis[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(12): 1393-1399.] DOI: 10.7507/1672-2531.202205163.

2.刘幼硕, 于普林. 中国老年衰弱相关内分泌激素管理临床实践指南(2023)[J]. 中华老年医学杂志, 2023, 42(2): 121-143. [Liu YS, Yu PL. Clinical practice guideline on endocrine system aging and hormone management for elderly with frailty in China(2023)[J]. Chinese Journal of Geriatrics, 2023, 42(2): 121-143.] DOI: 10.3760/cma.j.issn.0254-9026.2023.02.001.

3.Arlati S, Colombo V, Spoladore D, et al. A social virtual reality-based application for the physical and cognitive training of the elderly at home[J]. Sensors (Basel), 2019, 19(2): 261. DOI: 10.3390/s19020261.

4.Neri SG, Cardoso JR, Cruz L, et al. Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and Meta-analysis[J]. Clin Rehabil, 2017, 31(10): 1292-1304.DOI: 10.1177/0269215517694677.

5.Mugueta-Aguinaga I, Garcia-Zapirain B. Is technology present in frailty? Technology a back-up tool for dealing with frailty in the elderly: a systematic review[J]. Aging Dis, 2017, 8(2): 176-195. DOI: 10.14336/AD.2016.0901.

6.罗宝林, 罗泽槟, 陈森芸, 等. 老年人衰弱预防与延迟或逆转干预的证据总结[J]. 护理学杂志, 2021, 36 (14): 32-37. [Luo BL, Luo ZB, Chen SY, et al. Interventions to prevent,delay or reverse frailty in the elderly:evidence summary[J]. Journal of Nursing Science, 2021, 36(14): 32-37.] DOI: 10.3870/j.issn.1001-4152.2021.14.032.

7.Osoba MY, Rao AK, Agrawal SK, et al. Balance and gait in the elderly: a contemporary review[J]. L Laryngoscope Investig Otolaryngol, 2019, 4(1): 143-153. DOI: 10.1002/lio2.252.

8.Serino S, Barello S, Miraglia F, et al. Virtual reality as a potential tool to face frailty challenges[J]. Front Psychol, 2017, 8: 1541. DOI: 10.3389/fpsyg.2017.01541.

9.Mirelman A, Rochester L, Reelick M, et al. V-time: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial[J]. BMC Neurol, 2013, 13: 15. DOI: 10.1186/1471-2377-13-15.

10.Dermody G, Whitehead L, Wilson G, et al. The role of virtual reality in improving health outcomes for community-dwelling older adults: systematic review[J]. J Med Internet Res, 2020, 22(6): e17331. DOI: 10.2196/17331.

11.Optale G, Urgesi C, Busato V, et al. Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study[J]. Neurorehabil Neural Repair, 2010, 24(4): 348-357. DOI: 10.1177/1545968309353328.

12.Ferraz DD, Trippo KV, Duarie GP, et al. The effects of functional training, bicycle exercise, and exergaming on walking capacity of elderly patients with Parkinson disease: a pilot randomized controlled single-blinded trial[J]. Arch Phys Med Rehabil, 2018, 99(5): 826-833. DOI: 10.1016/j.apmr.2017.12.014.

13.Mirelman A, Maidan I, Herman T, et al. Virtual reality for gait training: can it induce motor learning to enhance complex walking and reduce fall risk in patients with parkinson's disease?[J]. J Gerontol A Biol Sci Med Sci, 2011, 66(2): 234-240. DOI: 10.1093/gerona/glq201.

14.Eggenberger P, Schumacher V, Angst M, et al. Does multicomponent physical exercise with simultaneous cognitive training boost cognitive performance in older adults? a 6-month randomized controlled trial with a 1-year follow-up[J]. Clin Interv Aging, 2015, 10: 1335-1349. DOI: 10.2147/CIA.S87732.

15.孔玉涛. 虚拟现实技术改善老年人衰弱状态的研究现状[J]. 医学信息, 2022, 35(9): 54-57. [Kong YT. Research status of virtual reality technology in improving aged frailty[J]. Journal of Medical Information, 2022, 35(9): 54-57.] DOI: 10.3969/j.issn.1006-1959.2022.09.013.

16.Riva G, Rizzo A, Alpini D, et al. Virtual environments in the diagnosis, prevention, and intervention of age-related diseases: a review of VR scenarios proposed in the EC VETERAN project[J]. Cyberpsychol Behav, 1999, 2(6): 577-591. DOI: 10.1089/cpb.1999.2.577.

17.Riva G, Wiederhold BK. The new dawn of virtual reality in health care: medical simulation and experiential interface[J]. Stud Health Technol Inform, 2015, 219: 3-6. DOI: 10.3233/978-1-61499-595-1-3.

18.Riva G, Gamberini L. Virtual reality in telemedicine[J]. Telemed J E Health, 2000, 6(3): 327-340. DOI:  10.1089/153056200750040183.

19.康宁, 于海军, 陆晓敏,等. 中国老年人跌倒发生率的Meta分析[J]. 中国循证医学杂志, 2022, 22 (10): 1142-1148. [Kang N, Yu HJ, Lu XM, et al. The rate of falls in Chinese elderly: a Meta-analysis[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(10): 1142-1148.] DOI: 10.7507/1672-2531.202111155.

20.Fu AS, Gao KL, Tung AK, et al. Effectiveness of exergaming training in reducing risk and incidence of falls in frail older adults with a history of falls[J]. Arch Phys Med Rehabil, 2015, 96(12): 2096-2102. DOI: 10.1016/j.apmr.2015.08.427.

21.Kamińska MS, Miller A, Rotter I, et al. The effectiveness of virtual reality training in reducing the risk of falls among elderly people[J]. Clin Interv Aging, 2018, 13: 2329-2338. DOI: 10.2147/CIA.S183502.

22.Clark R, Kraemer T. Clinical use of Nintendo Wii bowling simulation to decrease fall risk in an elderly resident of a nursing home: a case report[J]. J Geriatr Phys Ther, 2009, 32(4): 174-180. DOI: 10.1519/00139143-200932040-00006.

23.Yoo HN, Chung E, Lee BH. The effects of augmented reality-based otago exercise on balance, gait, and falls efficacy of elderly women[J]. J Phys Ther Sci, 2013, 25(7): 797-801. DOI: 10.1589/jpts.25.797.

24.Bacha JMR, Gomes GCV, de Freitas TB, et al. Effects of kinect adventures games versus conventional physical therapy on postural control in elderly people: a randomized controlled trial[J]. Games Health J, 2018, 7(1): 24-36. DOI: 10.1089/g4h.2017.0065.

25.Arlati S, Colombo V, Spoladore D, et al. A social virtual reality-based application for the physical and cognitive training of the elderly at home[J]. Sensors (Basel), 2019, 19(2): 261. DOI: 10.3390/s19020261.

26.González-Bernal JJ, Jahouh M, González-Santos J, et al. Influence of the use of Wii games on physical frailty components in institutionalized older adults[J]. Int J Environ Res Public Health, 2021, 18(5): 2723. DOI: 10.3390/ijerph18052723.

27.Zak M, Sikorski T, Wasik M, et al. Frailty syndrome—fall risk and rehabilitation management aided by virtual reality (VR) technology solutions: a narrative review of the current literature[J]. Int J Environ Res Public Health, 2022, 19(5): 2985. DOI: 10.3390/ijerph19052985.

28.Pedroli E, Greci L, Colombo D, et al. Characteristics, usability, and users experience of a system combining cognitive and physical therapy in a virtual environment: positive bike[J]. Sensors (Basel), 2018, 18(7): 2343. DOI: 10.3390/s18072343.

29.Manera V, Chapoulie E, Bourgeois J, et al. A feasibility study with image-based rendered virtual reality in patients with mild cognitive impairment and dementia[J]. PLoS One, 2016, 11(3): e0151487. DOI: 10.1371/journal.pone.0151487.

30.Banos RM, Etchemendy E, Castilla D, et al. Positive mood induction procedures for virtual environments designed for elderly people[J]. Interact Comput, 2012, 24(3): 131-138. DOI: 10.1016/j.intcom.2012.04.002.

31.Gomes GCV, Bacha JMR, Do Socorro Simoes M, et al. Feasibility, safety, acceptability, and functional outcomes of playing Nintendo Wii Fit PlusTM for frail elderly: study protocol for a feasibility trial[J]. Pilot Feasibility Stud, 2017, 3(1): 41. DOI: 10.1186/s40814-017-0184-1.

32.Syed-Abdul S, Malwade S, Nursetyo AA, et al. Virtual reality among the elderly: a usefulness and acceptance study from Taiwan[J]. BMC Geriatr, 2019, 19(1): 223. DOI: 10.1186/s12877-019-1218-8.

33.Htut TZC, Hiengkaew V, Jalayondeja C, et al. Effects of physical, virtual reality-based, and brain exercise on physical, cognition, and preference in older persons: a randomized controlled trial[J]. Eur Rev Aging Phys Act, 2018, 15: 10. DOI: 10.1186/s11556-018-0199-5.

34.Eggenberger P, Theill N, Holenstein S, et al. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up[J]. Clin Interv Aging, 2015, 10: 1711-1732. DOI: 10.2147/CIA.S91997.

35.Bisson E, Contant B, Sveistrup H, et al. Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training[J]. Cyberpsychol Behav, 2007, 10(1): 16-23. DOI: 10.1089/cpb.2006.9997.

36.Donath L, Rössler R, Faude O. Effects of virtual reality training (exergaming) compared to alternative exercise training and passive control on standing balance and functional mobility in healthy community-dwelling seniors: a Meta-analytical review[J]. Sports Med, 2016, 46(9): 1293-1309. DOI: 10.1007/s40279-016-0485-1.

37.Webster D, Celik O. Systematic review of kinect applications in elderly care and stroke rehabilitation[J]. J Neuroeng Rehabil, 2014, 11(1): 108. DOI: 10.1186/1743-0003-11-108.

38.Mirelman A, Rochester L, Maidan I, et al. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-time): a randomised controlled trial[J]. Lancet, 2016, 388(10050): 1170-1182. DOI: 10.1016/S0140-6736(16)31325-3.

39.Jackson SA, Marsh HW. Development and validation of a scale to measure optimal experience: the flow state scale[J]. J Sport Exerc Psychol, 1996, 18: 17-35. DOI: 10.1123/jsep.18.1.17.

40.Pedroli E, Cipresso P, Greci L, et al. An immersive motor protocol for frailty rehabilitation[J]. Front Neurol, 2019, 10: 1078. DOI: 10.3389/fneur.2019.01078.

41.Biesek S, Vojciechowski AS, Filho JM, et al. Effects of exergames and protein supplementation on body composition and musculoskeletal function of prefrail community-dwelling older women: a randomized, controlled clinical trial[J]. Int J Environ Res Public Health, 2021, 18(17): 9324. DOI: 10.3390/ijerph18179324.

42.de Bruin ED, Schoene D, Pichierri G, et al. Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations[J]. Z Gerontol Geriatr, 2010, 43(4): 229-234. DOI: 10.1007/s00391-010-0124-7.

43.Huntley JD, Gould RL, Liu K, et al. Do cognitive interventions improve general cognition in dementia? a Meta-analysis and Meta-regression[J]. BMJ Open, 2015, 5(4): e005247. DOI: 10.1136/bmjopen-2014-005247.

44.Skjæret N, Nawaz A, Morat T, et al. Exercise and rehabilitation delivered through exergames in older adults: an integrative review of technologies, safety and efficacy[J]. Int J Med Inform, 2016, 85(1): 1-16. DOI: 10.1016/j.ijmedinf.2015.10.008.

45.Cho GH, Hwangbo G, Shin HS. The effects of virtual reality-based balance training on balance of the elderly[J]. J Phys Ther Sci, 2014, 26(4): 615-617. DOI: 10.1589/jpts.26.615.

46.Agmon M, Belza B, Nguyen HQ, et al. A systematic review of interventions conducted in clinical or community settings to improve dual-task postural control in older adults[J]. Clin Interv Aging, 2014, 9: 477-492. DOI: 10.2147/CIA.S54978.

47.Franz JR, Francis CA, Allen MS, et al. Advanced age brings a greater reliance on visual feedback to maintain balance during walking[J]. Hum Mov Sci, 2015, 40: 381-392. DOI: 10.1016/j.humov.2015.01.012.

48.dos Santos Mendes FA, Pompeu JE, Modenesi Lobo A, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson's disease-effect of motor and cognitive demands of games: a longitudinal, controlled clinical study[J]. Physiotherapy, 2012, 98(3): 217-223. DOI: 10.1016/j.physio.2012.06.001.

49.Pedroli E, Mancuso V, Stramba-Badiale C, et al. Brain M-app's structure and usability: a new application for cognitive rehabilitation at home[J]. Front Hum Neurosci, 2022, 16: 898633. DOI: 10.3389/fnhum.2022.898633.

50.Fabrício SCC, Rodrigues RA, da Costa ML Jr. Falls among older adults seen at a São Paulo State public hospital: causes and consequences[J]. Rev Saude Publica, 2004, 38(1): 93-99. DOI: 10.1590/s0034-89102004000100013.

51.Kim J, Son J, Ko N, et al. Unsupervised virtual reality-based exercise program improves hip muscle strength and balance control in older adults: a pilot study[J]. Arch Phys Med Rehabil, 2013, 94(5): 937-943. DOI: 10.1016/j.apmr.2012.12.010.

52.Rendon AA, Lohman EB, Thorpe D, et al. The effect of virtual reality gaming on dynamic balance in older adults[J]. Age Ageing, 2012, 41(4): 549-552. DOI: 10.1093/ageing/afs053.

53.Allain P, Foloppe DA, Besnard J, et al. Detecting everyday action deficits in Alzheimer's disease using a nonimmersive virtual reality kitchen[J]. J Int Neuropsychol Soc, 2014, 20(5): 468-477. DOI: 10.1017/S1355617714000344.

54.van Diest M, Lamoth CJ, Stegenga J, et al. Exergaming for balance training of elderly: state of the art and future developments[J]. J Neuroeng Rehabil, 2013, 10: 101. DOI: 10.1186/1743-0003-10-101.

55.BourrelIer J, Fautrelle L, Haratyk E, et al. Enhancement of anticipatory postural adjustments by virtual reality in older adults with cognitive and motor deficits: a randomised trial[J]. Geriatrics (Basel), 2021, 6(3): 72. DOI: 10.3390/geriatrics6030072.

56.García-Betances RI, Jiménez-Mixco V, Arredondo MT, et al. Using virtual reality for cognitive training of the elderly[J]. Am J Alzheimers Dis Other Demen, 2015, 30(1): 49-54. DOI: 10.1177/1533317514545866.

57.Monteiro-Junior RS, Vaghetti CA, Nascimento OJ, et al. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons[J]. Neural Regen Res, 2016, 11(2): 201-204. DOI: 10.4103/1673-5374.177709.

58.Jahouh M, González-Bernal JJ, González-Santos J, et al. Impact of an intervention with Wii video games on the autonomy of activities of daily living and psychological-cognitive components in the institutionalized elderly[J]. Int J Environ Res Public Health, 2021, 18(4): 1570. DOI: 10.3390/ijerph18041570.

59.Piccardi L, Iaria G, Blanchini F, et al. Dissociated deficits of visuo-spatial memory in near space and navigational space: evidence from brain-damaged patients and healthy older participants[J]. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 2011, 18(3): 362-384. DOI: 10.1080/13825585.2011.560243.

60.Iosa M, Morone G, Fusco A, et al. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study[J]. Top Stroke Rehabil, 2015, 22(4): 306-316. DOI: 10.1179/1074935714Z.0000000036.

61.Werner P, Rabinowitz S, Klinger E, et al. Use of the virtual action planning supermarket for the diagnosis of mild cognitive impairment[J]. Dement Geriatr Cogn Disord, 2009, 27(4): 301-309. DOI: 10.1159/c000204915.

62.Benoit M, Guerchouche R, Petit PD, et al. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering[J]. Neuropsychiatr Dis Treat, 2015, 11: 557-563. DOI: 10.2147/NDT.S73179.

63.Wüest S, Borghese NA, Pirovano M, et al. Usability and effects of an exergame-based balance training program[J]. Games Health J, 2014, 3(2): 106-114. DOI: 10.1089/g4h.2013.0093.

《医学新知》由国家新闻出版总署批准,中国农工民主党湖北省委主管,武汉大学中南医院和中国农工民主党湖北省委医药卫生工作委员会主办的综合性医学学术期刊,国内外公开发行。

官方公众号

扫一扫,关注我们