Objective To identify risk factors for preoperative lower limb deep vein thrombosis (DVT) in elderly patients with hip fractures and to develop a predictive nomogram model.
Methods Elderly patients with hip fractures admitted to the Third Affiliated Hospital of Guangzhou University of Chinese Medicine from June 2021 to June 2024 was enrolled. Clinical data were collected and analyzed. Independent influencing factors for preoperative DVT were screened using Lasso regression and multivariate Logistic regression. A nomogram model was developed and validated internally and externally. Model performance was evaluated using Bootstrap resampling, calibration curves, receiver operating characteristic (ROC) curves with area under the curve (AUC), and decision curve analysis (DCA) to assess discrimination, calibration, and clinical utility.
Results A total of 644 patients were included, with 451 in the training set and 193 in the validation set. Multivariate Logistic regression revealed that elevated D-dimer levels [OR=1.927, 95%CI (1.675, 2.257)], prolonged time from injury to admission [OR=1.023, 95%CI (1.012, 1.034)], increased fibrinogen [OR=1.348, 95%CI (1.076, 1.703)], higher total cholesterol [OR=1.256, 95%CI (1.053, 1.504)], and hypoalbuminemia [OR=0.936, 95%CI (0.909, 0.965)] were independent predictors of preoperative DVT. The AUCs were 0.871 [95%CI (0.816, 0.925)] for the training set and 0.879 [95%CI (0.805, 0.953)] for the validation set. Calibration curves showed that the predicted probabilities were consistent with the actuality. DCA demonstrated that the model yielded a higher net benefit than traditional strategies across a risk threshold range of 10% to 70%.
Conclusion The nomogram-based predictive model developed in this study enables intuitive and accurate preoperative risk stratification for DVT in elderly patients with hip fractures. It serves as a robust scientific tool to guide early clinical screening and targeted interventions for thromboprophylaxis.
1.Li W, Ling H, Lu R, et al. Nomogram based on high-density lipoprotein cholesterol for the occurrence of preoperative deep vein thrombosis in patients with intertrochanteric femur fracture: a retrospective study[J]. J Orthop Surg Res, 2024, 19(1): 22.
2.Xu SL, Li K, Cao WW, et al. The association between admission mean corpuscular volume and preoperative deep venous thrombosis in geriatrics hip fracture: a retrospective study[J]. BMC Musculoskelet Disord, 2024, 25(1): 40.
3.Guo H, Xu K, Deng F, et al. Risk prediction models for preoperative deep vein thrombosis in older patients with hip fracture: a systematic review and Meta-analysis[J]. Clin Appl Thromb Hemost, 2024, 30: 10760296241285565.
4.Wang BH, Sun YD, Fan XC, et al. The admission pH is a risk factor of preoperative deep vein thrombosis in geriatric hip fracture: a retrospective cohort study[J]. Sci Rep, 2023, 13(1): 18392.
5.Jiang J, Xing F, Luo R, et al. Risk factors and prediction model of nomogram for preoperative calf muscle vein thrombosis in geriatric hip fracture patients[J]. Front Med (Lausanne), 2023, 10: 1236451.
6.陈泽宇,汪燕,康忠俊. 冠心病合并心力衰竭并发心肾综合征的风险预测列线图模型建立与验证[J]. 临床内科杂志, 2025, 42(1): 20-24. [Chen ZY, Wang Y, Kang ZJ. Development and validation of a risk prediction nomogram model for cardiorenal syndrome in patients with coronary heart disease and heart failure[J]. Journal of Clinical Internal Medicine, 2025, 42(1): 20-24.]
7.黄田, 胡锐, 高毓汶, 等. 老年髋部骨折患者术后肺炎发生的危险因素分析[J]. 湖北医药学院学报, 2024, 43(5): 549-553. [Huang T, Hu R, Gao YW, et al. Risk factors analysis of postoperative pneumonia in elderly patients with hip fracture[J]. Journal of Hubei University of Medicine, 2024, 43(5): 549-553.]
8.韩宇琛. 基于机器学习的中老年人健康状况预测模型研究 [D]. 十堰: 湖北医药学院, 2024. [Han YC. Research on health status prediction models for middle-aged and elderly based on machine learning[D]. Shiyan: Hubei University of Medicine, 2024.]
9.王叶婷, 刘平芳, 孙玉颖, 等. 髋部手术患者术后深静脉血栓危险因素的Meta分析[J]. 医学新知, 2024, 34(12): 1378-1394. [Wang YT, Liu PF, Sun YY, et al. A Meta-analysis of the risk factors of deep venous thrombosis in patients undergoing hip surgery[J]. Yixue Xinzhi Zazhi, 2024, 34(12): 1378-1394.]
10.何进椅, 赵丽岩, 丁敏辉, 等. 静脉血栓栓塞症的流行病学与临床研究进展[J]. 中国心血管杂志, 2024, 29(6): 585-588. [He JY, Zhao LY, Ding MH, et al. Advances in epidemiology and clinical research of venous thromboembolism[J]. Chinese Journal of Cardiovascular Medicine, 2024, 29(6): 585-588.]
11.覃勤朴, 赵振清, 宋莹莹, 等. 中性粒细胞计数、D-二聚体及Caprini血栓评分对脑血管狭窄介入术后下肢深静脉血栓形成的预测价值及模型构建[J]. 现代生物医学进展, 2023, 23(8): 1468-1472, 1501. [Qin QP, Zhao ZQ, Song YY, et al. Predictive value and model construction of neutrophil count, D-dimer, and Caprini score for deep vein thrombosis after cerebral vascular stenosis intervention[J]. Progress in Modern Biomedicine, 2023, 23(8): 1468-1472, 1501.]
12.张瑜, 王乐, 张静. D-二聚体对上皮性卵巢癌患者下肢深静脉血栓的诊断预测价值[J]. 中国临床医生杂志, 2023, 51(4): 480-482. [Zhang Y, Wang L, Zhang J. Diagnostic value of D-dimer for lower extremity deep vein thrombosis in epithelial ovarian cancer patients[J]. Chinese Journal of Clinicians, 2023, 51(4): 480-482.]
13.杨世亮,包金兰,温立强. 非糖尿病老年人残余胆固醇水平与下肢深静脉血栓形成的相关性研究[J]. 岭南急诊医学杂志, 2021, 26(6): 607-609. [Yang SL, Bao JL, Wen LQ. Correlation study on remnant cholesterol levels and lower extremity deep vein thrombosis in non-diabetic elderly[J]. Journal of Lingnan Emergency Medicine, 2021, 26(6): 607-609.]
14.方晴晴, 唐明, 常新东, 等. 肺癌患者合并深静脉血栓形成的列线图模型构建与评估[J]. 中国临床新医学, 2024, 17(9): 1019-1025. [Fang QQ, Tang M, Chang XD, et al. Development and validation of a nomogram model for deep vein thrombosis in lung cancer patients[J]. Chinese Journal of New Clinical Medicine, 2024, 17(9): 1019-1025.]
15.廖嘉佳, 梁小娜, 徐晓静, 等. 基于XGBoost的胸腰椎骨折内固定术后下肢深静脉血栓风险预测模型[J]. 中国现代医生, 2024, 62(33): 47-51, 116. [Liao JJ, Liang XN, Xu XJ, et al. XGBoost-based risk prediction model for deep vein thrombosis after thoracolumbar fracture internal fixation[J]. Chinese Journal of Modern Doctors, 2024, 62(33): 47-51, 116.]
16.陈少川. 重症创伤患者创伤性凝血病的预后预测与危险因素分析[D]. 广州: 南方医科大学, 2023. [Chen SC. Prognostic prediction and risk factors analysis of traumatic coagulopathy in severe trauma patients[D]. Guangzhou: Southern Medical University, 2023.]
17.孙荣, 管清艳, 杨文婷, 等. 血栓风险评估表结合集束化护理预防骨科手术后下肢深静脉血栓形成的效果[J]. 临床医学研究与实践, 2024, 9(29): 155-158. [Sun R, Guan QY, Yang WT, et al. Effectiveness of thrombosis risk assessment combined with cluster nursing in preventing deep vein thrombosis after orthopedic surgery[J]. Clinical Research and Practice, 2024, 9(29): 155-158.]
18.侯进荣, 杨增周, 滕宝庆. 血栓弹力图联合D-二聚体在老年股骨颈骨折围术期预测静脉血栓及术后康复效果的研究[J]. 黑龙江医药科学, 2025, 48(1): 67-70. [Hou JR, Yang ZZ, Teng BQ. Thromboelastography combined with D-dimer for predicting perioperative venous thrombosis and postoperative rehabilitation in elderly femoral neck fractures[J]. Heilongjiang Medicine and Pharmacy, 2025, 48(1): 67-70.]
19.李永霞, 姜家梅, 侍冬成, 等. 骨盆骨折后术前下肢深静脉血栓形成预测模型探讨[J]. 实用骨科杂志, 2024, 30(3): 217-221. [Li YX, Jiang JM, Shi DC, et al. Prediction model for preoperative deep vein thrombosis after pelvic fracture[J]. Journal of Practical Orthopaedics, 2024, 30(3): 217-221.]
20.蔡金玉,钟海燕,杨璐丹,等. 不同部位创伤骨折病人D-二聚体、纤维蛋白原水平的临床意义分析[J]. 蚌埠医学院学报, 2020, 45(1): 57-60. [Cai JY, Zhong HY, Yang LD, et al. Clinical significance analysis of D-dimer and fibrinogen levels in patients with traumatic fractures at different parts[J]. Journal of Bengbu Medical College, 2020, 45(1): 57-60.]