Objective To screen for prognostic methylation-related genes in bladder urothelial carcinoma (BLCA) and explore their value in the prognosis of BLCA.
Methods Download the sample data of the BLCA project from the TCGA database, obtain the methylation-related genes with a correlation score greater than 5 from the GeneCards database. Prognostic genes were identified using Lasso regression screening. GO and KEGG enrichment analysis were used to explore the functions and pathways involved in prognostic genes, and Cox regression analysis was used to identify genes with potential prognostic value. Receiver operator characteristic (ROC) curve and the area under the curve (AUC) was used to evaluate the prognostic model.
Results A total of 411 data with clinical samples and 206 methylation-related genes were obtained. 11 methylation-related genes with significant prognostic value were screened out, including VHL, THBS1, SMYD2, RARB, PRMT6, MYC, IGF2, ICMT, EGFR, DLEC1 and CARM1. Enrichment analysis showed that these genes were mainly involved in pathways such as complement and coagulation cascades, neuroactive ligand-receptor interactions, and tyrosine metabolism pathways. The results of the multivariate Cox regression analysis indicate that tumor invasion [HR=2.556, 95%CI(1.190, 5.491)] and high IGF2 expression [HR=3.088, 95%CI(1.348, 7.075)] were associated with poor prognosis in BLCA, whereas high VHL expression [HR=0.358, 95%CI(0.151, 0.845)] was a protective factor for BLCA. The ROC analysis showed that the AUC for overall survival at 1, 3, and 5 years were 0.733, 0.719, and 0.725 respectively, indicating that the prognostic model had good predictive performance.
Conclusion This study identified 11 methylation-related genes, tumour infiltration, high IGF2 expression, and high VHL expression may be associated with BLCA prognosis.
1.王猛, 滕晓东. 肌层浸润性膀胱癌的分子分型研究进展[J]. 中华病理学杂志, 2017, 46(6): 439-442. [Wang M, Teng XD. Progress in molecular typing of myometrial invasive bladder cancer[J]. Chinese Journal of Pathology, 2017, 46(6): 439-442.] DOI: 10.3760/cma.j.issn.0529-5807.2017.06.022.
2.Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
3.Alfred Witjes J, Lebret T, Compérat EM, et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer[J]. Eur Urol, 2017, 71(3): 462-475. DOI: 10.1016/j.eururo.2016.06.020.
4.Bratu O, Marcu D, Anghel R, et al. Tumoral markers in bladder cancer (Review)[J]. Exp Ther Med, 2021, 22(1): 773. DOI: 10.3892/etm.2021.10205.
5.Baylin SB, Jones PA. A decade of exploring the cancer epigenome-biological and translational implications[J]. Nat Rev Cancer, 2011, 11(10): 726-734. DOI: 10.1038/nrc3130.
6.Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation[J]. Nat Rev Genet, 2016, 17(9): 551-565. DOI: 10.1038/nrg.2016.83.
7.Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression[J]. Nat Rev Genet, 2016, 17(5): 284-299. DOI: 10.1038/nrg.2016.13.
8.Song YZ, Li X, Li W, et al. Integrated genomic analysis for prediction of survival for patients with liver cancer using The Cancer Genome Atlas[J]. World J Gastroenterol, 2018, 24(28): 3145-3154. DOI: 10.3748/wjg.v24.i28.3145.
9.Breen MS, Dobbyn A, Li Q, et al. Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia[J]. Nat Neurosci, 2019, 22(9): 1402-1412. DOI: 10.1038/s41593-019-0463-7.
10.Ricklin D, Hajishengallis G, Yang K, et al. Complement: a key system for immune surveillance and homeostasis[J]. Nature Immunol, 2010, 11(9): 785-797. DOI: 10.1038/ni.1923.
11.Afshar-Kharghan V. The role of the complement system in cancer[J]. J Clin Invest, 2017, 127(3): 780-789. DOI: 10.1172/JCI90962.
12.Schuller HM. Neurotransmission and cancer: implications for prevention and therapy[J]. Anticancer Drugs, 2008, 19(7): 655-671. DOI: 10.1097/CAD.0b013e3283025b58.
13.Sun L, Zhang L, Chen J, et al. Activation of tyrosine metabolism in CD13+ cancer stem cells drives relapse in hepatocellular carcinoma[J]. Cancer Res Treat, 2020, 52(2): 604-621. DOI: 10.4143/crt.2019.444.
14.Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. DOI: 10.1016/j.cell.2011.02.013.
15.汪洋,李志鹏,王可兵. 上尿路尿路上皮癌术后预防性膀胱灌注化疗的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(6): 649-652. [Wang Y, Li ZP, Wang KB. Research progress on preventive intravesical chemotherapy after surgery for upper urinary tract urothelial carcinoma[J]. Chinese Journal of Endourology (Electronic Edition), 2023, 17(6): 649-652.] DOI: 10.3877/cma.j.issn.1674-3253.2023.06.020.
16.余俊豪,麻立. 经腹全腹腔镜上尿路尿路上皮癌根治术在临床中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(5): 529-532. [Yu JH, Ma L. Clinical application of total transabdominal laparoscopic radical resection of upper urinary tract urothelial carcinoma[J]. Chinese Journal of Endourology (Electronic Edition), 2023, 17(5): 529-532.] DOI: 10.3877/cma.j.issn.1674-3253.2023.05.021.
17.郑铎,尚攀峰,刘隽垚,等. 上尿路尿路上皮癌患者根治性肾输尿管切除术后膀胱内复发危险因素的Meta分析[J]. 中国循证医学杂志, 2018, 18(3): 305-313. [Zheng D, Shang PF, Liu JY, et al. Risk factors for intravesical recurrence after radical nephroureterectomy of upper tract urothelial carcinoma: a Meta-analysis[J]. Chinese Journal of Evidence-Based Medicine, 2018, 18(3): 305-313.] DOI: 10.7507/1672-2531.201710121.
18.江骏斌,陈征,卓育敏. DNMT1在前列腺癌中相关研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(6): 485-488. [Jiang JB, Chen Z, Zhuo YM. Research progress on DNMT1 in prostate cancer[J]. Chinese Journal of Endourology (Electronic Edition), 2020, 14(6): 485-488.] DOI: 10.3877/cma.j.issn.1674- 3253.2020.06.020.
19.颜春晖,游三丽,徐勤,等. 冠心病患者ABCG1、ANGPTL2启动子区甲基化与心力衰竭发生的关系研究 [J]. 中国循证心血管医学杂志, 2024, 16(2): 180-184. [Yan CH, You SL, Xu Q, et al. Relationship between promoter methylation of ABCG1 and ANGPTL2 and heart failure in patients with coronary heart disease[J]. Chinese Journal of Evidence-Bases Cardiovascular Medicine, 2024, 16(2): 180-184.] DOI: 10.3969/j.issn.1674- 4055.2024.02.12.
20.陈佳琪,刘婉莹,杨帆,等. EZH2小分子抑制药抗消化道肿瘤的研究进展[J]. 药学前沿, 2020, 23(8): 1615-1620. [Chen JQ, Liu WY, Yang F, et al. Research progress in EZH2 small molecule inhibitor in the treatment of gastrointestinal cancer[J]. Frontiers in Pharmaceutical Sciences, 2020, 23(8): 1615-1620.] DOI: 10.3969/j.issn.1008-049X.2020.08.035.
21.Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update[J]. Nat Rev Cancer, 2012, 12(3): 159-169. DOI: 10.1038/nrc3215.
22.Werner H, Bruchim I. The insulin-like growth factor-I receptor as an oncogene[J]. Arch Physiol Biochem, 2009, 115(2): 58-71. DOI: 10.1080/13813450902783106.
23.Kaelin WG Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer[J]. Nat Rev Cancer, 2008, 8(11): 865-873. DOI: 10.1038/nrc2502.
24.Badoiu SC, Greabu M, Miricescu D, et al. PI3K/AKT/mTOR dysregulation and reprogramming metabolic pathways in renal cancer: crosstalk with the VHL/HIF axis[J]. Int J Mol Sci, 2023, 24(9): 8391. DOI: 10.3390/ijms24098391.
25.Fridman WH, Pagès F, Sautès-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome[J]. Nat Rev Cancer, 2012, 12(4): 298-306. DOI: 10.1038/nrc3245.
26.Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression-implications for anticancer therapy[J]. Nat Rev Clin Oncol, 2019, 16(6): 356-371. DOI: 10.1038/s41571-019-0175-7.
27.Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis[J]. Cell, 2010, 141(1): 39-51. DOI: 10.1016/j.cell.2010.03.014.
28.史振祥,吴洒,蔡伟松,等. MTHFD2与头颈部鳞状细胞癌的肿瘤微环境相关性[J]. 医学新知, 2024, 34(3): 291-300. [Shi ZX, Wu S, Cai WS, et al. The correlation between MTHFD2 and the tumor microenvironment in head and neck squamous cell carcinoma[J]. Yixue Xinzhi Zazhi, 2024, 34(3): 291-300.] DOI: 10.12173/j.issn.1004-5511.202306014.