Objective To investigate the potential causal relationships between periodontitis (PD), chronic periodontitis (CP), complicated chronic periodontitis (CCP), and benign prostatic hyperplasia (BPH), as well as the mediating effect of plasma inflammatory factors, using a two-sample Mendelian randomization (MR) approach.
Methods Genetic data on BPH, PD, CP, CCP, and circulating inflammatory factors levels were obtained from the FinnGen and GWAS projects for two-sample MR analysis. The inverse-variance weighting (IVW) method, MR-Egger, weighted median, simple mode, and weighted mode methods were employed for analyses. The mediating effect of plasma inflammatory factors on the association between CCP and BPH was assessed using IVW.
Results The IVW analysis indicated no significant causal relationship between PD, CP, and BPH. However, CCP was associated with an increased risk of BPH [OR=1.14, 95% CI (1.04, 1.25), PFDR=0.028]. Among inflammatory factors, leukemia inhibitory factor [OR=1.14, 95%CI(1.02, 1.28), PFDR=0.024] and C-C motif chemokine 28 [OR=1.11, 95%CI(1.00, 1.23), PFDR=0.047] were found to promote BPH. Conversely, plasma levels of TNF-related activation-induced cytokine [OR=0.89, 95%CI(0.81, 0.99), PFDR=0.024], Fms- like tyrosine kinase 3 ligand [OR=0.88, 95%CI(0.79, 0.98), PFDR=0.022], Oncostatin M [OR=0.84, 95%CI(0.72, 0.98), PFDR=0.022], C-X-C motif chemokine 9 [OR=0.83, 95%CI(0.74, 0.93), PFDR=0.001], and caspase-8 [OR=0.82, 95%CI(0.69, 0.96), PFDR=0.015] were significantly negatively associated with BPH risk. However, no significant mediating effect of these inflammatory factors was observed in the association between CCP and BPH.
Conclusion CCP increases the risk of BPH, and certain inflammatory factors also contribute to BPH risk. However, these factors do not mediate the effect of CCP on BPH. Further studies are needed to elucidate the mechanisms underlying the association between CCP and BPH risk.
1.Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri, implant diseases and conditions[J]. J Periodontol, 2018, 89 Suppl 1: S173-S182. DOI: 10.1002/jper.17-0721.
2.Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontology 2000, 2017, 75(1): 7-23. DOI: 10.1111/prd.12221.
3.Jepsen S, Caton JG, Albandar JM, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: consensus report of workgroup 3 of the 2017 world workshop on the classification of periodontal and peri, implant diseases and conditions[J]. J Periodontol, 2018, 89 Suppl 1: S237-S248. DOI: 10.1002/jper.17-0733.
4.Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015, 15(1): 30-44. DOI: 10.1038/nri3785.
5.Kim HY, Lim Y, Jang JS, et al. Extracellular vesicles from periodontal pathogens regulate hepatic steatosis via toll-like receptor 2 and plasminogen activator inhibitor-1[J]. J Extracell Vesicles, 2024, 13(1): e12407. DOI: 10.1002/jev2.12407.
6.Abusleme L, Hoare A, Hong BY, et al. Microbial signatures of health, gingivitis, and periodontitis[J]. Periodontol 2000, 2021, 86(1): 57-78. DOI: 10.1111/prd.12362.
7.Hsu YT, Chang AM, Daubert D, et al. Inflammation and tissue remodeling mediator expression during gingivitis: a comparison between experimental, naturally occurring gingivitis, and periodontal health[J]. J Periodontol, 2024, 95(12): 1139-1149. DOI: 10.1002/jper.23-0692.
8.曾明辉,蒋东方,秦锁炳. 钬激光前列腺剜除术治疗前列腺增生疗效的影响因素[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(2): 157-161. [Zeng MH, Jiang DF, Qin SB, et al. The influence factors of holmium laser prostate enucleation in the treatment of benign prostatic hyperplasia[J]. Chinese Journal of Endourology (Electronic Edition), 2024, 18(2): 157-161.] DOI: 10.3877/cma.j.issn.1674-3253.2024.02.007.
9.Zhu C, Wang DQ, Zi H, et al. Epidemiological trends of urinary tract infections, urolithiasis and benign prostatic hyperplasia in 203 countries and territories from 1990 to 2019[J]. Mil Med Res, 2021, 8(1): 64. DOI: 10.1186/s40779-021-00359-8.
10.Zi H, Liu MY, Luo LS, et al. Global burden of benign prostatic hyperplasia, urinary tract infections, urolithiasis, bladder cancer, kidney cancer, and prostate cancer from 1990 to 2021[J]. Mil Med Res, 2024, 11(1): 64. DOI: 10.1186/s40779-024-00569-w.
11.陆沛文, 訾豪, 钱信行, 等. 1990与2019年中国、美国与德国良性前列腺增生疾病负担分析[J]. 医学新知, 2024, 34(5): 545-553. [Lu PW, Zi H, Qian XH, et al. Analysis of the disease burden of benign prostatic hyperplasia in China, the United States and Germany at 1990 and 2019[J]. Yixue Xinzhi Zazhi, 2024, 34(5): 545-553.] DOI: 10.12173/j.issn.1004-5511.202403012.
12.Chughtai B, Forde JC, Thomas DD, et al. Benign prostatic hyperplasia[J]. Nat Rev Dis Primers, 2016, 2: 16031. DOI: 10.1038/nrdp.2016.31.
13.Norström MM, Rådestad E, Sundberg B, et al. Progression of benign prostatic hyperplasia is associated with pro-inflammatory mediators and chronic activation of prostate-infiltrating lymphocytes[J]. Oncotarget, 2016, 7(17): 23581-23593. DOI: 10.18632/oncotarget.8051.
14.El-Sahar AE, Bekhit N, Eissa NM, et al. Targeting HMGB1/PI3K/Akt and NF-κB/Nrf-2 signaling pathways by vildagliptin mitigates testosterone-induced benign prostate hyperplasia in rats[J]. Life Sci, 2023, 322: 121645. DOI: 10.1016/j.lfs.2023.121645.
15.Li LY, Han J, Wu L, et al. Alterations of gut microbiota diversity, composition and metabonomics in testosterone-induced benign prostatic hyperplasia rats[J]. Mil Med Res, 2022, 9(1): 12. DOI: 10.1186/s40779-022-00373-4.
16.Wu L, Li BH, Wang YY, et al. Periodontal disease and risk of benign prostate hyperplasia: a cross-sectional study[J]. Mil Med Res, 2019, 6(1): 34. DOI: 10.1186/s40779-019-0223-8.
17.Wang SY, Cai Y, Hu X, et al. P. gingivalis in oral-prostate axis exacerbates benign prostatic hyperplasia via IL-6/IL-6R pathway[J]. Mil Med Res, 2024, 11(1): 30. DOI: 10.1186/s40779-024-00533-8.
18.杨室淞, 朱聪, 钱信行, 等. 良性前列腺增生与牙周炎 [J]. 医学新知, 2024, 34(3): 330-338. [Yang SS, Zhu C, Qian XH, et al. Benign prostatic hyperplasia and periodontitis[J]. Yixue Xinzhi Zazhi, 2024, 34(3): 330-338.] DOI: 10.12173/j.issn.1004-5511. 202402025.
19.骆华,魏强. 牙周炎与良性前列腺增生和前列腺炎[J]. 华西医学, 2021, 36(7): 990-994. [Luo H, Wei Q. Periodontitis and benign prostatic hyperplasia and prostatitis [J]. West China Medical Journal, 2021, 36(7): 990-994.] DOI: 10.7507/1002-0179.201909104.
20.Sergeeva I, Meng Z, Ma Y. Periodontitis and hepatocellular carcinoma: a two-sample mendelian randomisation study[J]. Int Dent J, 2024, 1: S0020-6539(24)01503-X. DOI: 10.1016/j.identj.2024.09.015.
21.Sanderson E, Glymour MM, Holmes MV, et al. Mendelian randomization[J]. Nat Rev Methods Primers, 2022, 2: 6. DOI: 10.1038/s43586-021-00092-5.
22.Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates[J]. Eur J Epidemiol, 2018, 33(10): 947-952. DOI: 10.1007/s10654-018-0424-6.
23.Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. DOI: 10.1093/ije/dyv080.
24.Wei H, Tian G, Xu S, et al. Evaluation of bi-directional causal association between periodontitis and benign prostatic hyperplasia: epidemiological studies and two-sample mendelian randomization analysis[J]. Front Genet, 2024, 15: 1326434. DOI: 10.3389/fgene.2024.1326434.
25.Wang J, Chang CY, Yang X, et al. Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases[J]. Mol Ther, 2023, 31(2): 331-343. DOI: 10.1016/j.ymthe.2022.12.016.
26.Royuela M, Ricote M, Parsons MS, et al. Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic, and malignant human prostate[J]. J Pathol, 2004, 202(1): 41-49. DOI: 10.1002/path.1476.
27.Mohan T, Deng L, Wang BZ. CCL28 chemokine: an anchoring point bridging innate and adaptive immunity[J]. Int Immunopharmacol, 2017, 51: 165-170. DOI: 10.1016/j.intimp.2017.08.012.
28.Mergia Terefe E, Catalan Opulencia MJ, Rakhshani A, et al. Roles of CCR10/CCL27-CCL28 axis in tumour development: mechanisms, diagnostic and therapeutic approaches, and perspectives[J]. Expert Rev Mol Med, 2022, 24: e37. DOI: 10.1017/erm.2022.28.
29.Lantieri F, Bachetti T. OSM/OSMR and interleukin 6 family cytokines in physiological and pathological condition[J]. Int J Mol Sci, 2022, 23(19):11096. DOI: 10.3390/ijms231911096.
30.Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway[J]. Trends Immunol, 2023, 44(8): 628-643. DOI: 10.1016/j.it.2023.05.007.
31.Folkersen L, Gustafsson S, Wang Q, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals[J]. Nat Metab, 2020, 2(10): 1135-1148. DOI: 10.1038/s42255-020-00287-2.
32.Momenilandi M, Lévy R, Sobrino S, et al. FLT3L governs the development of partially overlapping hematopoietic lineages in humans and mice[J]. Cell, 2024, 187(11): 2817-2837. e31. DOI: 10.1016/j.cell.2024.04.009.
33.Baima G, Minoli M, Michaud DS, et al. Periodontitis and risk of cancer: mechanistic evidence[J]. Periodontol 2000, 2024, 96(1): 83-94. DOI: 10.1111/prd.12540.
34.Zhang M, Lin D, Luo C, et al. Tissue kallikrein protects rat prostate against the inflammatory damage in a chronic autoimmune prostatitis model via restoring endothelial function in a bradykinin receptor B2-dependent way[J]. Oxid Med Cell Longev, 2022, 2022: 1247806. DOI: 10.1155/2022/1247806.
35.Sheng J, Yang Y, Cui Y, et al. M2 macrophage-mediated interleukin-4 signalling induces myofibroblast phenotype during the progression of benign prostatic hyperplasia[J]. Cell Death Dis, 2018, 9(7): 755. DOI: 10.1038/s41419-018-0744-1.