Welcome to visit Zhongnan Medical Journal Press Series journal website!

Applications and perspectives of metastatic colorectal cancer organoids

Published on Jun. 29, 2024Total Views: 65 timesTotal Downloads: 31 timesDownloadMobile

Author: CUI Jingwei 1 WANG Mengjie 1 QIN Fuhao 1 WANG Lu 2, 3 FAN Zhimin 2, 3

Affiliation: 1. Department of Anorectal, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China 2. Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M, Nanjing 210022, China 3. Nanjing Clinical Medical Research Center for Traditional Chinese Medicine Anorectal Diseases, Nanjing 210022, China

Keywords: Metastatic colorectal cancer Organoids Colorectal cancer Colorectal cancer organoids Patient-derived xenografts Patients-derived organoids

DOI: 10.12173/j.issn.1004-5511.202308038

Reference: Cui JW, Wang MJ, Qin FH, Wang L, Fan ZM. Applications and perspectives of metastatic colorectal cancer organoids[J]. Yixue Xinzhi Zazhi, 2024, 34(6): 692-698. DOI: 10.12173/j.issn.1004-5511.202308038.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Currently, colorectal cancer (CRC) is one of the most malignancies in the world, with high rates of morbidity and mortality. More than 50% of patients will eventually develop tumor metastasis, and patients with metastatic colorectal cancer (mCRC) are not sensitive to most drugs, leading to a poorer prognosis for patients. Although studies of mCRC using patient-derived cancer cells and patient-derived xenografts (PDX) are mature, both still have limitations. However, patient-derived organoids (PDO) has the benefits of duplicating the immune circumstance of real tumor in vivo, preserving tumor heterogeneity, short culture cycles and easy preservation. And it has shown great application value in the fundamental study of mCRC, explanation of the mechanism of drug action, development of new drugs and individualized treatment. In order to explain the importance of organoids in mCRC research and offer directions for future research, this paper summarizes the recent studies and difficulties of organoid technology in recent years.

Full-text
Please download the PDF version to read the full text: download
References

1.Baidoun F, Elshiwy K, Elkeraie Y, et al. Colorectal cancer epidemiology: recent trends and impact on outcomes[J]. Curr Drug Targets, 2021, 22(9): 998-1009. DOI: 10.2174/1389450121999201117115717.

2.Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. Ca Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.

3.Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review[J]. JAMA, 2021, 325(7): 669-685. DOI: 10.1001/jama.2021.0106.

4.李志利, 王璐, 王玉婷, 等. 类器官模型在结直肠癌研究中的应用[J]. 医学新知, 2023, 33(1): 62-67. [Li ZL, Wang L, Wang YT, et al. Application of organoid models in colorectal cancer research[J]. Yixue Xinzhi Zazhi, 2023, 33(1): 62-67.] DOI: 10.12173/j.issn.1004-5511.202208031.

5.Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. DOI: 10.1038/nature07935.

6.Jung P, Sato T, Merlos-Suárez A, et al. Isolation and in vitro expansion of human colonic stem cells[J]. Nat Med, 2011, 17(10): 1225-1227. DOI: 10.1038/nm.2470.

7.Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett's epithelium[J]. Gastroenterology, 2011, 141(5): 1762-1772. DOI: 10.1053/j.gastro.2011.07.050.

8.van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945. DOI: 10.1016/j.cell.2015.03.053.

9.Avolio M, Trusolino L. Rational treatment of metastatic colorectal cancer: a reverse tale of men, mice, and culture dishes[J]. Cancer Discov, 2021, 11(7): 1644-1660. DOI: 10.1158/2159-8290.CD-20-1531.

10.Di Nicolantonio F, Vitiello PP, Marsoni S, et al. Precision oncology in metastatic colorectal cancer-from biology to medicine[J]. Nat Rev Clin Oncol, 2021, 18(8): 506-525. DOI: 10.1038/s41571-021-00495-z.

11.Invrea F, Rovito R, Torchiaro E, et al. Patient-derived xenografts (PDXs) as model systems for human cancer[J]. Curr Opin Biotechnol, 2020, 63: 151-156. DOI: 10.1016/j.copbio.2020.01.003.

12.John T, Kohler D, Tsao M, et al. The ability to form primary tumor xenografts is predictive of increased risk of disease recurrence in early-stage non-small cell lung cancer[J]. Clin Cancer Res, 2011, 17(1): 134-141. DOI: 10.1158/1078-0432.CCR-10-2224.

13.Luo L, Ma Y, Zheng Y, et al. Application progress of organoids in colorectal cancer[J]. Front Cell Dev Biol, 2022, 10: 815067. DOI: 10.3389/fcell.2022.815067.

14.Li Y, Tang P, Cai S, et al. Organoid based personalized medicine: from bench to bedside[J]. Cell Regen, 2020, 9(1): 21. DOI: 10.1186/s13619-020-00059-z.

15.He X, Jiang Y, Zhang L, et al. Patient-derived organoids as a platform for drug screening in metastatic colorectal cancer[J]. Front Bioeng Biotechnol, 2023, 11: 1190637. DOI: 10.3389/fbioe.2023.1190637.

16.Takeda H, Kataoka S, Nakayama M, et al. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes[J]. Proc Natl Acad Sci USA, 2019, 116(31): 15635-15644. DOI: 10.1073/pnas.1904714116.

17.O'Rourke KP, Loizou E, Livshits G, et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer[J]. Nat Biotechnol, 2017, 35(6): 577-582. DOI: 10.1038/nbt.3837.

18.Fumagalli A, Oost KC, Kester L, et al. Plasticity of lgr5-negative cancer cells drives metastasis in colorectal cancer[J]. Cell Stem Cell, 2020, 26(4): 569-578. DOI: 10.1016/j.stem.2020.02.008.

19.Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550): 43-47. DOI: 10.1038/nature14415.

20.Devarasetty M, Wang E, Soker S, et al. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy[J]. Biofabrication, 2017, 9(2): 21002. DOI: 10.1088/1758-5090/aa7484.

21.Subtil B, Iyer KK, Poel D, et al. Dendritic cell phenotype and function in a 3D co-culture model of patient-derived metastatic colorectal cancer organoids[J]. Front Immunol, 2023, 14: 1105244. DOI: 10.3389/fimmu.2023.1105244.

22.Laoukili J, Constantinides A, Wassenaar ECE, et al. Peritoneal metastases from colorectal cancer belong to consensus molecular subtype 4 and are sensitised to oxaliplatin by inhibiting reducing capacity[J]. Br J Cancer, 2022, 126(12): 1824-1833. DOI: 10.1038/s41416-022-01742-5.

23.胡亮, 裴雪涛, 李艳华. 肠器官芯片构建技术及应用研究进展[J]. 军事医学, 2023, 47(8): 561-565. [Hu L, Pei XT, Li YH. Development and application of intestine-on-a-chip technology[J]. Military Medical Sciences, 2023, 47(8): 561-565.] DOI: 10.7644/j.issn.1674-9960.2023.08.001.

24.王亚清, 陶婷婷, 秦建华. 类器官芯片[J]. 中国科学: 生命科学, 2023, 53(2): 211-220. [Wang YQ, Tao TT, Qin JH. Organoid chip[J]. Chinese Science: Life Sciences, 2023, 53(2): 211-220.] http://qikan.cqvip.com/Qikan/Article/Detail?id=7109065849.

25.Betge J, Rindtorff N, Sauer J, et al. The drug-induced phenotypic landscape of colorectal cancer organoids[J]. Nat Commun, 2022, 13(1): 3135. DOI: 10.1038/s41467-022-30722-9.

26.Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer[J]. Cell Stem Cell. 2020, 26(1): 17-26. DOI: 10.1016/j.stem.2019.10.010.

27.Bruun J, Kryeziu K, Eide PW, et al. Patient-derived organoids from multiple colorectal cancer liver metastases reveal moderate intra-patient pharmacotranscriptomic heterogeneity[J]. Clin Cancer Res, 2020, 26(15): 4107-4119. DOI: 10.1158/1078-0432.CCR-19-3637.

28.Okamoto T, Duverle D, Yaginuma K, et al. Comparative analysis of patient-matched pdos revealed a reduction in olfm4-associated clusters in metastatic lesions in colorectal cancer[J]. Stem Cell Reports, 2021, 16(4): 954-967. DOI: 10.1016/j.stemcr.2021.02.012.

29.Sogawa C, Eguchi T, Namba Y, et al. Gel-Free 3D tumoroids with stem cell properties modeling drug resistance to cisplatin and imatinib in metastatic colorectal cancer[J]. Cells, 2021, 10(2): 344. DOI: 10.3390/cells10020344.

30.Cioce M, Fumagalli MR, Donzelli S, et al. Interrogating colorectal cancer metastasis to liver: a search for clinically viable compounds and mechanistic insights in colorectal cancer patient derived organoids[J]. J Exp Clin Cancer Res, 2023, 42(1): 170. DOI: 10.1186/s13046-023-02754-6.

31.Ubink I, Bolhaqueiro ACF, Elias SG, et al. Organoids from colorectal peritoneal metastases as a platform for improving hyperthermic intraperitoneal chemotherapy[J]. Br J Surg, 2019, 106(10): 1404-1414. DOI: 10.1002/bjs.11206.

32.Boos SL, Loevenich LP, Vosberg S, et al. Disease modeling on tumor organoids implicates aurka as a therapeutic target in liver metastatic colorectal cancer[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(2): 517-540. DOI: 10.1016/j.jcmgh.2021.10.008.

33.Küçükköse E, Wensink GE, Roelse CM, et al. Mismatch repair status in patient-derived colorectal cancer organoids does not affect intrinsic tumor cell sensitivity to systemic therapy[J]. Cancers (Basel), 2021, 13(21): 5434. DOI: 10.3390/cancers13215434.

34.Helling TS, Martin M. Cause of death from liver metastases in colorectal cancer[J]. Ann Surg Oncol, 2014, 21(2): 501-506. DOI: 10.1245/s10434-013-3297-7.

35.Mo S, Tang P, Luo W, et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy[J]. Adv Sci (Weinh), 2022, 9(31): e2204097. DOI: 10.1002/advs.202204097.

36.Ooft SN, Weeber F, Dijkstra KK, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients[J]. Sci Transl Med, 2019, 11(513): eaay2574. DOI: 10.1126/scitranslmed.aay2574.

37.Narasimhan V, Wright JA, Churchill M, et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy[J]. Clin Cancer Res, 2020, 26(14): 3662-3670. DOI: 10.1158/1078-0432.CCR-20-0073.

38.Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378): 920-926. DOI:10.1126/science.aao2774.

39.Ganesh K, Basnet H, Kaygusuz Y, et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer[J]. Nat Cancer, 2020, 1(1): 28-45. DOI: 10.1038/s43018-019-0006-x.

40.Cave DD, Hernando-Momblona X, Sevillano M, et al. Nodal-induced L1CAM/CXCR4 subpopulation sustains tumor growth and metastasis in colorectal cancer derived organoids[J]. Theranostics, 2021, 11(12): 5686-5699. DOI: 10.7150/thno.54027.

41.Ji DB, Wu AW. Organoid in colorectal cancer: progress and challenges[J]. Chin Med J (Engl), 2020, 133(16): 1971-1977. DOI: 10.1097/CM9.0000000000000882.

42.Yan H, Siu HC, Ho SL, et al. Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles[J]. Gut, 2020, 69(12): 2165-2179. DOI: 10.1136/gutjnl-2019-320019.

43.Jin Y, Kim J, Lee JS, et al. Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform[J]. Adv Funct Mater, 2018, 28(37): 15. DOI: 10.1002/adfm.201801954.

44.Shirure VS, Bi Y, Curtis MB, et al. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids[J]. Lab Chip, 2018, 18(23): 3687-3702. DOI: 10.1039/c8lc00596f.

45.Zhang YS, Aleman J, Shin SR, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors[J]. Proc Natl Acad Sci USA, 2017, 114(12): E2293-E2302. DOI: 10.1073/pnas.1612906114.

46.孟繁露, 韩益明, 修继冬, 等. 高通量自动化类器官芯片研究进展[J]. 天津医药, 2024, 52(1): 1-3. [Meng FL, Han YM, Xiu JD, et al. Advances in high-throughput automated organoid-on-a-chip system[J]. Tianjin Medical Journal, 2024, 52(1): 1-3.] DOI: 10.11958/20231474.

47.Saorin G, Caligiuri I, Rizzolio F. Microfluidic organoids-on-a-chip: the future of human models[J]. Cell Dev Biol. 2023, 144: 41-54. DOI: 10.1016/j.semcdb.2022.10.001.