1.Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer[J]. Nat Rev Cancer, 2018, 18(5): 269-282. DOI: 10.1038/nrc.2018.11.
2.Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92. DOI: 10.1038/s41572-020-00224-3.
3.Wyss A, Hashibe M, Chuang SC, et al. Cigarette, cigar, and pipe smoking and the risk of head and neck cancers: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium[J]. Am J Epidemiol, 2013, 178(5): 679-690. DOI: 10.1093/aje/kwt029.
4.Cramer JD, Burtness B, Le QT, et al. The changing therapeutic landscape of head and neck cancer[J]. Nat Rev Clin Oncol, 2019, 16(11): 669-683. DOI: 10.1038/s41571-019-0227-z.
5.Budach V, Tinhofer I. Novel prognostic clinical factors and biomarkers for outcome prediction in head and neck cancer: a systematic review[J]. 2019, 20(6): e313-e326. DOI: 10.1016/s1470-2045(19)30177-9.
6.Heath BR, Michmerhuizen NL, Donnelly CR, et al. Head and neck cancer immunotherapy beyond the checkpoint blockade[J]. 2019, 98(10): 1073-1080. DOI: 10.1177/0022034519864112.
7.Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease[J]. Cell Metab, 2017, 25(1): 27-42. DOI: 10.1016/j.cmet.2016.08.009.
8.Nilsson R, Jain M, Madhusudhan N, et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer[J]. Nat Commun, 2014, 5: 3128. DOI: 10.1038/ncomms4128.
9.Shang M, Yang H, Yang R, et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation[J]. Nat Commun, 2021, 12(1): 1940. DOI: 10.1038/s41467-021-22173-5.
10.Wang Z, Jensen MA, Zenklusen JC. A practical guide to The Cancer Genome Atlas (TCGA)[J]. Methods Mol Biol, 2016, 1418: 111-141. DOI: 10.1007/978-1-4939-3578-9_6.
11.Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550. DOI: 10.1073/pnas.0506580102.
12.Pulte D, Brenner H. Changes in survival in head and neck cancers in the late 20th and early 21st century: a period analysis[J]. Oncologist, 2010, 15(9): 994-1001. DOI: 10.1634/theoncologist.2009-0289.
13.殷亭湄, 杨必乾, 付晓艳, 等. 甘草抗肿瘤研究进展及发展趋势可视化分析[J], 中国药师, 2024, 27(1): 76-84. [Yin TM, Yang BQ, Fu XY, et al. Visual analysis of the research progress and development trend of licorice anti-tumor[J], China Pharmacist, 2024, 27(1): 76-84.] DOI: 10.12173/j.issn.1008-049X.202310078.
14.苏厦露, 麻发强, 金风. 放射治疗与靶向治疗或免疫治疗联合治疗头颈部鳞癌的研究进展[J], 现代医学, 2023, 51(12): 1778-1783. [Su XL, Ma FQ, Jin F. Research progress of radiotherapy combined with targeted therapy or immunotherapy for head and neck squamous carcinoma[J], Modern Medicine, 2023, 51(12): 1778-1783.] DOI: 10.3969/j.issn.1671-7562.2023.12.020.
15.Oliva M, Spreafico A, Taberna M, et al. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma[J]. Ann Oncol, 2019, 30(1): 57-67. DOI: 10.1093/annonc/mdy507.
16.Hansen AR, Siu LL. PD-L1 testing in cancer: challenges in companion diagnostic development[J]. JAMA Oncol, 2016, 2(1): 15-16. DOI: 10.1001/jamaoncol.2015.4685.
17.Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab vs investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression[J]. Oral Oncol, 2018, 81: 45-51. DOI: 10.1016/j.oraloncology.2018.04.008.
18.Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck[J]. N Engl J Med, 2016, 375(19): 1856-1867. DOI: 10.1056/NEJMoa1602252.
19.Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition[J]. N Engl J Med, 2017, 377(25): 2500-2501. DOI: 10.1056/NEJMc1713444.
20.Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230): 124-128. DOI: 10.1126/science.aaa1348.
21.Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma[J]. N Engl J Med, 2014, 371(23): 2189-2199. DOI: 10.1056/NEJMoa1406498.
22.Mehrmohamadi M, Liu X, Shestov AA, et al. Characterization of the usage of the serine metabolic network in human cancer[J]. Cell Rep, 2014, 9(4): 1507-1519. DOI: 10.1016/j.celrep.2014.10.026.
23.Schmidt DR, Patel R, Kirsch DG, et al. Metabolomics in cancer research and emerging applications in clinical oncology[J]. 2021, 71(4): 333-358. DOI: 10.3322/caac.21670.
24.Pikman Y, Puissant A, Alexe G, et al. Targeting MTHFD2 in acute myeloid leukemia[J]. J Exp Med, 2016, 213(7): 1285-1306. DOI: 10.1084/jem.20151574.
25.Koufaris C, Gallage S, Yang T, et al. Suppression of MTHFD2 in MCF-7 breast cancer cells increases glycolysis, dependency on exogenous glycine, and sensitivity to folate depletion[J]. J Proteome Res, 2016, 15(8): 2618-2625. DOI: 10.1021/acs.jproteome.6b00188.
26.Wang W, Gu W, Tang H, et al. The emerging role of MTHFD family genes in regulating the tumor immunity of oral squamous cell carcinoma[J]. 2022, 2022: 4867730. DOI: 10.1155/2022/4867730.
27.郭启政, 郭超, 李源凤. MTHFD2通过影响免疫浸润调控口腔鳞状细胞癌的研究进展[J]. 农垦医学, 2023, 45(2): 161-166. [Guo QZ, Guo C, Li YF. MTHFD2 regulates oral squamous cell carcinoma by affecting immune infiltration[J]. Nongken Medicine, 2023, 45(2): 161-166.] DOI: 10.3969/j.issn.1008-1127.2023.02.013.
28.Büttner R, Longshore JW, López-Ríos F, et al. Implementing TMB measurement in clinical practice: considerations on assay requirements[J]. ESMO Open, 2019, 4(1): e000442. DOI: 10.1136/esmoopen-2018-000442.
29.Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Med, 2017, 9(1): 34. DOI: 10.1186/s13073-017-0424-2.
30.Goodman AM, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers[J]. mol cancer ther, 2017, 16(11): 2598-2608. DOI: 10.1158/1535-7163.Mct-17-0386.
31.Trotta R, Parihar R, Yu J, et al. Differential expression of SHIP1 in CD56bright and CD56dim NK cells provides a molecular basis for distinct functional responses to monokine costimulation[J]. Blood, 2005, 105(8): 3011-3018. DOI: 10.1182/blood-2004-10-4072.
32.Ron-Harel N, Santos D, Ghergurovich JM, et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation[J]. Cell Metab, 2016, 24(1): 104-117. DOI: 10.1016/j.cmet.2016.06.007.