Welcome to visit Zhongnan Medical Journal Press Series journal website!

The expression of ASXL3 in prostate cancer

Published on Mar. 29, 2024Total Views: 1190 timesTotal Downloads: 974 timesDownloadMobile

Author: ZHANG Jinhui 1, 2 LIU Mengyang 2, 3 CUI Jinlong 2, 3 REN Yiming 1, 2 CAI Yi 2, 3 MING Daojing 2 REN Xuequn 1 YUAN Shuai 2

Affiliation: 1. Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China 2. Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 3. Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: ASXL3 Prostate cancer Prognosis Immune infiltration Biomarkers

DOI: 10.12173/j.issn.1004-5511.202312105

Reference: Zhang JH, Liu MY, Cui JL, Ren YM, Cai Y, Ming DJ, Ren XQ, Yuan S. The expression of ASXL3 in prostate cancer [J]. Yixue Xinzhi Zazhi, 2024, 34(3): 282-290. DOI:10.12173/j.issn.1004-5511.202312105.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the expression and clinical significance of ASXL3 in prostate cancer.

Methods  The data were obtained from multiple bioinformatics databases, including TCGA, GEPIA2, STRING and TIMER. R or online tools were used to analyze the expression of ASXL3 mRNA and its association with the prognosis, clinical features, and immune cell infiltration in prostate cancer. GO and KEGG pathway enrichment analyses were conducted using ASXL3 interacting proteins or expression-related genes. The expression of ASXL3 mRNA in prostate cancer cell lines was verified by using qRT-PCR.

Results  The expression level of ASXL3 mRNA in prostate cancer tissues was significantly lower compared to normal tissues. The high expression of ASXL3 mRNA was related to the better overall survival of prostate cancer patients, and the expression of ASXL3 mRNA was positively correlated with the infiltration of various immune cells. STRING database analysis revealed potential interactions of ASXL3 with BAP1, EZH2, ASXL2, and BRD4. ASXL3 mRNA expression was significantly lower in prostate cancer cell lines (LNCaP, C4-2, PC-3, DU145) than normal prostate stromal cell WPMY-1.

Conclusion  ASXL3 is down-regulated in prostate cancer tissues and is associated with overall survival, which may provide a novel prognostic biomarker and potential therapeutic target for prostate cancer.

Full-text
Please download the PDF version to read the full text: download
References

1.Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48.DOI: 10.3322/caac.21763.

2.Wojcik GL, Graff M, Nishimura KK, et al. Genetic analyses of diverse populations improves discovery for complex traits[J]. Nature, 2019, 570(7762): 514-518. DOI: 10.1038/s41586-019-1310-4.

3.Wang A, Shen J, Rodriguez AA, et al. Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants[J]. Nat Genet, 2023, 55(12): 2065-2074. DOI: 10.1038/s41588-023-01534-4.

4.Qi J, Li M, Wang L, et al. National and subnational trends in cancer burden in China, 2005-2020: an analysis of national mortality surveillance data[J]. Lancet Public Health, 2023, 8(12): e943-e955. DOI: 10.1016/s2468-2667(23)00211-6.

5.邓通, 蔡林, 陈征, 等. 1990年与2017年中国前列腺癌疾病负担分析[J]. 医学新知, 2020, 30(4): 252-259. [Deng T, Cai L, Chen Z, et al. Analysis of the burden of prostate cancer in China in 1990 and 2017[J]. Yixue Xinzhi Zazhi, 2020, 30(4): 252-259.] DOI: 10.12173/j.issn.1004-5511.2020.04.01.

6.Micol JB, Abdel-Wahab O. The role of additional sex combs-like proteins in cancer[J]. Cold Spring Harb Perspect Med, 2016, 6(10): a026526. DOI: 10.1101/cshperspect.a026526.

7.Piunti A, Shilatifard A. The roles of polycomb repressive complexes in mammalian development and cancer[J]. Nat Rev Mol Cell Biol, 2021, 22(5): 326-345. DOI: 10.1038/s41580-021-00341-1.

8.Li T, Hodgson JW, Petruk S, et al. Additional sex combs interacts with enhancer of zeste and trithorax and modulates levels of trimethylation on histone H3K4 and H3K27 during transcription of hsp70[J]. Epigenetics Chromatin, 2017, 10(1): 43. DOI: 10.1186/s13072-017-0151-3.

9.Kuechler A, Czeschik JC, Graf E, et al. Bainbridge-ropers syndrome caused by loss-of-function variants in ASXL3: a recognizable condition[J]. Eur J Hum Genet, 2017, 25(2): 183-191. DOI: 10.1038/ejhg.2016.165.

10.Guo H, Wang T, Wu H, et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model[J]. Mol Autism, 2018, 9: 64. DOI: 10.1186/s13229-018-0247-z.

11.Szczepanski AP, Zhao Z, Sosnowski T, et al. ASXL3 bridges BRD4 to BAP1 complex and governs enhancer activity in small cell lung cancer[J]. Genome Med, 2020, 12(1): 63. DOI: 10.1186/s13073-020-00760-3.

12.Zhang C, Qian J, Wu Y, et al. Identification of novel diagnosis biomarkers for therapy-related neuroendocrine prostate cancer[J]. Pathol Oncol Res, 2021, 27: 1609968.DOI: 10.3389/pore.2021.1609968.

13.Beltran H, Romanel A, Conteduca V, et al. Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer[J]. J Clin Invest, 2020, 130(4): 1653-1668. DOI: 10.1172/jci131041.

14.Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis[J]. Nucleic Acids Res, 2019, 47(W1): W556-W560. DOI: 10.1093/nar/gkz430.

15.Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. DOI: 10.1093/nar/gkaa1074.

16.Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21): e108-e110. DOI: 10.1158/0008-5472.Can-17-0307.

17.Li B, Severson E, Pignon JC, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy[J]. Genome Biol, 2016, 17(1): 174. DOI: 10.1186/s13059-016-1028-7.

18.Sahtoe DD, van Dijk WJ, Ekkebus R, et al. BAP1/ASXL1 recruitment and activation for H2A deubiquitination[J]. Nat Commun, 2016, 7: 10292. DOI: 10.1038/ncomms 10292.

19.Campagne A, Lee MK, Zielinski D, et al. BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation[J]. Nat Commun, 2019, 10(1): 348. DOI: 10.1038/s41467-018-08255-x.

20.Daou S, Barbour H, Ahmed O, et al. Monoubiquitination of ASXLs controls the deubiquitinase activity of the tumor suppressor BAP1[J]. Nat Commun, 2018, 9(1): 4385. DOI: 10.1038/s41467-018-06854-2.

21.Shukla V, Rao M, Zhang H, et al. ASXL3 is a novel pluripotency factor in human respiratory epithelial cells and a potential therapeutic target in small cell lung cancer[J]. Cancer Res, 2017, 77(22): 6267-6281. DOI: 10.1158/0008-5472.Can-17-0570.

22.Tsuboyama N, Wang R, Szczepanski AP, et al. Therapeutic targeting of BAP1/ASXL3 sub-complex in ASCL1-dependent small cell lung cancer[J]. Oncogene, 2022, 41(15): 2152-2162. DOI: 10.1038/s41388-022-02240-x.

23.Katoh M. Functional proteomics of the epigenetic regulators ASXL1, ASXL2 and ASXL3: a convergence of proteomics and epigenetics for translational medicine[J]. Expert Rev Proteomics, 2015, 12(3): 317-328. DOI: 10.1586/14789450.2015.1033409.

24.Li J, Byrne KT, Yan F, et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy[J]. Immunity, 2018, 49(1): 178-193. e7. DOI: 10.1016/j.immuni.2018.06.006.

25.Cha E, Fong L. Immunotherapy for prostate cancer: biology and therapeutic approaches[J]. J Clin Oncol, 2011, 29(27): 3677-3685. DOI: 10.1200/jco.2010.34.5025.

26.Sridaran D, Bradshaw E, Deselm C, et al. Prostate cancer immunotherapy: improving clinical outcomes with a multi-pronged approach[J]. Cell Rep Med, 2023, 4(10): 101199.DOI: 10.1016/j.xcrm.2023.101199.