Welcome to visit Zhongnan Medical Journal Press Series journal website!

Frontier progress and future strategies in the treatment of pulmonary fibrosis

Published on Aug. 25, 2025Total Views: 25 timesTotal Downloads: 6 timesDownloadMobile

Author: YIN Jianing 1 LIU Yiying 2 WAN Hui 2 LIU Fei 3 LI Haijun 2

Affiliation: 1. Department of Pediatric Respiratory, The First Hospital of Jilin University, Changchun 130021, China 2. Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China 3. Department of Obstetrics, The First Hospital of Jilin University, Changchun 130021, China

Keywords: Pulmonary fibrosis Idiopathic pulmonary fibrosis Lung transplantation Pathogenesis Targeted therapy

DOI: 10.12173/j.issn.1004-5511.202504089

Reference: Yin JN, Liu YY, Wan H, Liu F, Li HJ. Frontier progress and future strategies in the treatment of pulmonary fibrosis[J]. Yixue Xinzhi Zazhi, 2025, 35(8): 957-966. DOI: 10.12173/j.issn.1004-5511.202504089. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Pulmonary fibrosis(PF) is a fatal disease characterized by chronic inflammation and fibrosis of lung tissue, with idiopathic pulmonary fibrosis(IPF) being the most common. At present, fibrosis cannot be reversed, and the primary drugs used in clinical practice to slow down disease progression are pirfenidone and nintedanib. However, lung function deteriorates rapidly once the treatment is discontinued. Lung transplantation is the only curative treatment for PF, but the scarcity of donors and high risks significantly limit the feasibility of the procedure. In recent years, research has focused on the pathogenesis of PF, including epithelial injury and impaired repair, dysregulation of the TGF-β/Wnt signaling pathways, and mitochondrial dysfunction, providing new directions for targeted therapy. Emerging strategies, including targeted signaling pathway inhibitors, stem cell therapy, immune modulation, lncRNA regulation, and nanodelivery systems, have demonstrated potential therapeutic value of PF. However, clinical translation still faces challenges, and further optimization of treatment strategies is needed to achieve disease reversal. Future research should also explore the molecular mechanisms of various therapeutic approaches in depth. This article systematically introduces the research progress of PF treatment at home and abroad, and provides certain reference for new drug development.

Full-text
Please download the PDF version to read the full text: download
References

1.Volkmann ER, Denton CP, Kolb M, et al. Lysophosphatidic acid receptor 1 inhibition: a potential treatment target for pulmonary fibrosis[J]. Eur Respir Rev, 2024, 33(172): 240015. DOI: 10.1183/16000617.0015-2024.

2.Jin H, Park SY, Lee JE, et al. GTSE1-driven ZEB1 stabilization promotes pulmonary fibrosis through the epithelial-to-mesenchymal transition[J]. Mol Ther, 2024, 32(11): 4138-4157. DOI: 10.1016/j.ymthe.2024.09.029.

3.Li Y, Jiang C, Zhu W, et al. Exploring therapeutic targets for molecular therapy of idiopathic pulmonary fibrosis[J]. Sci Prog, 2024, 107(2): 368504241247402. DOI: 10.1177/ 00368504241247402.

4.Milman KI, Zheng Y, Rosen C, et al. Lung cell transplantation for pulmonary fibrosis[J]. Sci Adv, 2024, 10(34): eadk2524. DOI: 10.1126/sciadv.adk2524.

5.Zheng Q, Cox IA, Campbell JA, et al. Mortality and survival in idiopathic pulmonary fibrosis: a systematic review and Meta-analysis[J]. ERJ Open Res, 2022, 8(1): 00591-02021. DOI: 10.1183/23120541.00591-2021.

6.Zhao J, Yu W, Zhou D, et al. Delineating, imaging, and assessing pulmonary fibrosis remodeling via collagen hybridization[J]. ACS Nano, 2024, 18(41): 27997-28011. DOI: 10.1021/acsnano.4c06139.

7.Sesé L, Annesi-Maesano I. Lung cancer and idiopathic pulmonary fibrosis: environmental exposures are the key[J]. Eur Respir J, 2024, 63(5): 2400760. DOI: 10.1183/13993003.00760-2024.

8.Jia C, Yang M, Xiao G, et al. ESL attenuates BLM-induced IPF in mice: dual mediation of the TLR4/NF-κB and TGF-β1/PI3K/Akt/FOXO3a pathways[J]. Phytomedicine, 2024, 132: 155545. DOI: 10.1016/j.phymed.2024.155545.

9.Sun Z, Ji Z, Meng H, et al. Lactate facilitated mitochondrial fission-derived ROS to promote pulmonary fibrosis via ERK/DRP-1 signaling[J]. J Transl Med, 2024, 22(1): 479. DOI: 10.1186/s12967-024-05289-2.

10.Guo J, Yang L, Song H, et al. Prevention of bleomycin-induced pulmonary fibrosis by vaccination with the Tocilizumab mimotope[J]. Hum Vaccin Immunother, 2024, 20(1): 2319965. DOI: 10.1080/21645515.2024.2319965.

11.Ying H, Fang M, Hang QQ, et al. Pirfenidone modulates macrophage polarization and ameliorates radiation-induced lung fibrosis by inhibiting the TGF-β1/Smad3 pathway[J]. J Cell Mol Med, 2021, 25(18): 8662-8675. DOI: 10.1111/jcmm.16821.

12.Glass DS, Grossfeld D, Renna HA, et al. Idiopathic pulmonary fibrosis: current and future treatment[J]. Clin Respir J, 2022, 16(2): 84-96. DOI: 10.1111/crj.13466.

13.Koudstaal T, Funke-Chambour M, Kreuter M, et al. Pulmonary fibrosis: from pathogenesis to clinical decision-making[J]. Trends Mol Med, 2023, 29(12): 1076-1087. DOI: 10.1016/j.molmed.2023.08.010.

14.Ni H, Chen M, Dong D, et al. CYLD/HDAC6 signaling regulates the interplay between epithelial-mesenchymal transition and ciliary homeostasis during pulmonary fibrosis[J]. Cell Death Dis, 2024, 15(8): 581. DOI: 10.1038/s41419-024-06972-4.

15.Burgoyne RA, Fisher AJ, Borthwick LA. The role of epithelial damage in the pulmonary immune response[J]. Cells, 2021, 10(10): 2763. DOI: 10.3390/cells10102763.

16.Ghonim MA, Boyd DF, Flerlage T, et al. Pulmonary inflammation and fibroblast immunoregulation: from bench to bedside[J]. J Clin Invest, 2023, 133(17): e170499. DOI: 10.1172/JCI170499.

17.Gairola S, Sinha A, Kaundal RK. Linking NLRP3 inflammasome and pulmonary fibrosis: mechanistic insights and promising therapeutic avenues[J]. Inflammopharmacology, 2024, 32(1): 287-305. DOI: 10.1007/s10787-023-01389-5.

18.Huang KY, Petretto E. Cross-species integration of single-cell RNA-seq resolved alveolar-epithelial transitional states in idiopathic pulmonary fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(3): L491-L506. DOI: 10.1152/ajplung.00594.2020.

19.Jiang J, Xiao K, Chen P. NOTCH signaling in lung diseases[J]. Exp Lung Res, 2017, 43(4-5): 217-228. DOI: 10.1080/01902148.2017.1306599.

20.Wasnick R, Korfei M, Piskulak K, et al. Notch1 induces defective epithelial surfactant processing and pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2023, 207(3): 283-299. DOI: 10.1164/rccm.202105-1284OC.

21.Bayati P, Taherian M, Soleimani M, et al. Induced pluripotent stem cells modulate the Wnt pathway in the bleomycin-induced model of idiopathic pulmonary fibrosis[J]. Stem Cell Res Ther, 2023, 14(1): 343. DOI: 10.1186/s13287-023-03581-4.

22.Fang Y, Chung S, Xu L, et al. RUNX2 promotes fibrosis via an alveolar-to-pathological fibroblast transition[J]. Nature, 2025, 640(8057): 221-230. DOI: 10.1038/s41586-024-08542-2.

23.Mümmler C, Burgy O, Hermann S, et al. Cell-specific expression of runt-related transcription factor 2 contributes to pulmonary fibrosis[J]. FASEB J, 2018, 32(2): 703-716. DOI: 10.1096/fj.201700482R.

24.Wang CJ, Li BB, Tan YJ, et al. MicroRNA-31/184 is involved in transforming growth factor-β-induced apoptosis in A549 human alveolar adenocarcinoma cells[J]. Life Sci, 2020, 242: 117205. DOI: 10.1016/j.lfs.2019.117205.

25.Loffredo LF, Kustagi A, Ringham OR, et al. Heparan sulfate regulates amphiregulin programming of tissue reparative lung mesenchymal cells during influenza a virus infection in mice[J]. Nat Commun, 2025, 16(1): 2129. DOI: 10.1038/s41467-025-57362-z.

26.He B, Yu H, Liu S, et al. Mitochondrial cristae architecture protects against mtDNA release and inflammation[J]. Cell Rep, 2022, 41(10): 111774. DOI: 10.1016/j.celrep.2022.111774.

27.Albano GD, Montalbano AM, Gagliardo R, et al. Autophagy/mitophagy in airway diseases: impact of oxidative stress on epithelial cells[J]. Biomolecules, 2023, 13(8): 1217. DOI: 10.3390/biom13081217.

28.Lin Q, Lin Y, Liao X, et al. ACSL1 improves pulmonary fibrosis by reducing mitochondrial damage and activating PINK1/Parkin mediated mitophagy[J]. Sci Rep, 2024, 14(1): 26504. DOI: 10.1038/s41598-024-78136-5.

29.Valand A, Rajasekar P, Wain LV, et al. Interplay between genetics and epigenetics in lung fibrosis[J]. Int J Biochem Cell Biol, 2025, 180: 106739. DOI: 10.1016/j.biocel.2025.106739.

30.Lyu W, Wang H, Ji T, et al. Histone methyltransferase KMT2A promotes pulmonary fibrogenesis via targeting pro-fibrotic factor PU.1 in fibroblasts[J]. Clin Transl Med, 2025, 15(2): e70217. DOI: 10.1002/ctm2.70217.

31.Sanders YY, Ambalavanan N, Halloran B, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2012, 186(6): 525-535. DOI: 10.1164/rccm.201201-0077OC.

32.Lee JU, Son JH, Shim EY, et al. Global DNA methylation pattern of fibroblasts in idiopathic pulmonary fibrosis[J]. DNA Cell Biol, 2019, 38(9): 905-914. DOI: 10.1089/dna.2018.4557. 

33.Arai T, Tachibana K, Sugimoto C, et al. High-dose prednisolone after intravenous methylprednisolone improves prognosis of acute exacerbation in idiopathic interstitial pneumonias[J]. Respirology, 2017, 22(7): 1363-1370. DOI: 10.1111/resp.13065.

34.Naccache JM, Jouneau S, Didier M, et al. Cyclophosphamide added to glucocorticoids in acute exacerbation of idiopathic pulmonary fibrosis (EXAFIP): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Respir Med, 2022, 10(1): 26-34. DOI: 10.1016/S2213-2600(21)00354-4.

35.Srivali N, De Giacomi F, Moua T, et al. Corticosteroid therapy for treating acute exacerbation of interstitial lung diseases: a systematic review[J]. Thorax, 2025, 80(3): 140-149. DOI: 10.1136/thorax-2024-222636.

36.Hung CF, Raghu G. Treatment of acute exacerbations of interstitial lung diseases with corticosteroids: evidence[J]. Respirology, 2024, 29(9): 747-750. DOI: 10.1111/resp.14788.

37.Jang HJ, Yong SH, Leem AY, et al. Corticosteroid responsiveness in patients with acute exacerbation of interstitial lung disease admitted to the emergency department[J]. Sci Rep, 2021, 11(1): 5762. DOI: 10.1038/s41598-021-85539-1.

38.Bonella F, Spagnolo P, Ryerson C. Current and future treatment landscape for idiopathic pulmonary fibrosis[J]. Drugs, 2023, 83(17): 1581-1593. DOI: 10.1007/s40265-023-01950-0.

39.Zhang XL, Cao Y, Zheng B. Efficacy of N-acetylcysteine plus pirfenidone in the treatment of idiopathic pulmonary fibrosis: a systematic review and Meta-analysis[J]. BMC Pulm Med, 2023, 23(1): 479. DOI: 10.1186/s12890-023-02778-w.

40.Ghazipura M, Mammen MJ, Herman DD, et al. Nintedanib in progressive pulmonary fibrosis: a systematic review and Meta-analysis[J]. Ann Am Thorac Soc, 2022, 19(6): 1040-1049. DOI: 10.1513/AnnalsATS.202103-343OC.

41.Maher TM. Interstitial lung disease: a review[J]. JAMA, 2024, 331(19): 1655. DOI: 10.1001/jama.2024.3669.

42.Chianese M, Screm G, Salton F, et al. Pirfenidone and nintedanib in pulmonary fibrosis: lights and shadows[J]. Pharmaceuticals (Basel), 2024, 17(6): 709. DOI: 10.3390/ph17060709.

43.Lamb YN. Nintedanib: a review in fibrotic interstitial lung diseases[J]. Drugs, 2021, 81(5): 575-586. DOI: 10.1007/s40265-021-01487-0.

44.Podolanczuk AJ, Raghu G. Idiopathic pulmonary fibrosis mortality: update on trends in the modern treatment era[J]. Eur Respir J, 2024, 64(2): 2401305. DOI: 10.1183/13993003.01305-2024.

45.Corte TJ, Behr J, Cottin V, et al. Efficacy and safety of admilparant, an LPA1 antagonist, in pulmonary fibrosis: a phase 2 randomized clinical trial[J]. Am J Respir Crit Care Med, 2025, 211(2): 230-238. DOI: 10.1164/rccm.202405-0977OC.

46.Zhao R, Wang Z, Wang G, et al. Sustained amphiregulin expression in intermediate alveolar stem cells drives progressive fibrosis[J]. Cell Stem Cell, 2024, 31(9): 1344-1358. e6. DOI: 10.1016/j.stem.2024.07.004.

47.Zhao Z, Sun F, Wang W, et al. Nucleic acid-based nanogels with "offensive and defensive" effects for enhanced chemo-immunotherapy[J]. J Control Release, 2025, 385: 113977. DOI: 10.1016/j.jconrel.2025.113977.

48.Shen H, Xu Y, Zhang Y, et al. Efficacy of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease and obstructive sleep apnea; a randomized controlled trial[J]. J Rehabil Med, 2024, 56: jrm23757. DOI: 10.2340/jrm.v56.23757.

49.Badenes-Bonet D, Cejudo P, Rodó-Pin A, et al. Impact of high-flow oxygen therapy during exercise in idiopathic pulmonary fibrosis: a pilot crossover clinical trial[J]. BMC Pulm Med, 2021, 21(1): 355. DOI: 10.1186/s12890-021-01727-9.

50.Yang J, Steffens A, Olson AL, et al. Supplemental oxygen therapy use among patients with fibrosing interstitial lung disease in the United States[J]. Respir Res, 2025, 26(1): 80. DOI: 10.1186/s12931-025-03139-3.

51.Tuyls S, Verleden SE, Wuyts WA, et al. Determinants of survival in lung transplantation patients with idiopathic pulmonary fibrosis: a retrospective cohort study[J]. Transpl Int, 2019, 32(4): 399-409. DOI: 10.1111/tri.13382.

52.Stenman C, Wallinder A, Holmberg E, et al. Malignancies after lung transplantation[J]. Transpl Int, 2024, 37: 12127. DOI: 10.3389/ti.2024.12127.

53.Hamilton TB, Bacon DR. Leo fabian: a life of accomplishment[J]. J Anesth Hist, 2020, 6(2): 70-73. DOI: 10.1016/j.janh.2019.08.004.

54.Citak S, Saribas E, Halis AN, et al. Expanding horizons: lung transplantation for non-IPF interstitial lung diseases[J]. BMC Pulm Med, 2024, 24(1): 482. DOI: 10.1186/s12890-024-03291-4.

55.Li D, Liu Y, Wang B. Single versus bilateral lung transplantation in idiopathic pulmonary fibrosis: a systematic review and Meta-analysis[J]. PloS One, 2020, 15(5): e0233732. DOI: 10.1371/journal.pone.0233732.

56.Starnes VA, Barr ML, Cohen RG, et al. Living-donor lobar lung transplantation experience: intermediate results[J]. J Thorac Cardiovasc Surg, 1996, 112(5): 1284-1291. DOI: 10.1016/S0022-5223(96)70142-3.

57.Nakajima D, Sakanoue I, Kayawake H, et al. Adult living-donor lobar lung transplant using a small-for-size graft[J]. Eur J Cardiothorac Surg, 2024, 66(6): ezae390. DOI: 10.1093/ejcts/ezae390.

58.Shou BL, Kalra A, Zhou AL, et al. Impact of extracorporeal membrane oxygenation bridging duration on lung transplant outcomes[J]. Ann Thorac Surg, 2024, 118(2): 496-503. DOI: 10.1016/j.athoracsur.2024.04.021.

59.Lee SY, Ahn JH, Kim HC, et al. Outcomes of lung transplantation in patients with right ventricular dysfunction: a single-center retrospective analysis comparing ECMO configurations in a bridge-to-transplant setting[J]. Trans Int, 2024, 37: 12657. DOI: 10.3389/ti.2024.12657.

60.Luo J, Li P, Dong M, et al. SLC15A3 plays a crucial role in pulmonary fibrosis by regulating macrophage oxidative stress[J]. Cell Death Differ, 2024, 31(4): 417-430. DOI: 10.1038/s41418-024-01266-w.

61.Zhu J, Jiang Q, Gao S, et al. IL20Rb aggravates pulmonary fibrosis through enhancing bone marrow derived profibrotic macrophage activation[J]. Pharmacol Res, 2024, 203: 107178. DOI: 10.1016/j.phrs.2024.107178.

62.Liu C, Zhang Q, Zhou H, et al. GLP-1R activation attenuates the progression of pulmonary fibrosis via disrupting NLRP3 inflammasome/PFKFB3-driven glycolysis interaction and histone lactylation[J]. J Transl Med, 2024, 22(1): 954. DOI: 10.1186/s12967-024-05753-z.

63.Chioccioli M, Liu S, Magruder S, et al. Stem cell migration drives lung repair in living mice[J]. Dev Cell, 2024, 59(7): 830-840. e4. DOI: 10.1016/j.devcel.2024.02.003.

64.Ouji-Sageshima N, Hiyama A, Kumamoto M, et al. Adipose-derived mesenchymal stem cells (ADSCs) Have anti-fibrotic effects on lung fibroblasts from idiopathic pulmonary fibrosis (IPF) patients[J]. Cells, 2024, 13(24): 2050. DOI: 10.3390/cells13242050.

65.Li M, Li J, Wang Y, et al. Umbilical cord-derived mesenchymal stem cells preferentially modulate macrophages to alleviate pulmonary fibrosis[J]. Stem Cell Res Ther, 2024, 15(1): 475. DOI: 10.1186/s13287-024-04091-7.

66.Liu Z, Zheng Q, Li Z, et al. Epithelial stem cells from human small bronchi offer a potential for therapy of idiopathic pulmonary fibrosis[J]. EBioMedicine, 2025, 112: 105538. DOI: 10.1016/j.ebiom.2024.105538.

67.Zhang S, Zhou M, Shao C, et al. Autologous P63+ lung progenitor cell transplantation in idiopathic pulmonary fibrosis: a phase 1 clinical trial[J]. Elife, 2025, 13: RP102451. DOI: 10.7554/eLife.102451.

68.Yadav P, Ortega JG, Tamaki W, et al. Macrophage-fibroblast crosstalk drives Arg1-dependent lung fibrosis via ornithine loading[J]. bioRxiv, 2024. DOI: 10.1101/2023.09.06.556606.

69.Mou Y, Wu GR, Wang Q, et al. Macrophage-targeted delivery of siRNA to silence Mecp2 gene expression attenuates pulmonary fibrosis[J]. Bioeng Transl Med, 2022, 7(2): e10280. DOI: 10.1002/btm2.10280.

70.Chen Y, Wang T, Liang F, et al. Nicotinamide phosphoribosyltransferase prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice[J]. Theranostics, 2024, 14(7): 2794-2815. DOI: 10.7150/thno.94482.

71.Um IG, Woo JS, Lee YJ, et al. IL-21 drives skin and lung inflammation and fibrosis in a model for systemic sclerosis[J]. Immunol Lett, 2024, 270: 106924. DOI: 10.1016/j.imlet.2024.106924.

72.Zhao Y, Yang J, Zhang Q, et al. Fasting alleviates bleomycin-induced lung inflammation and fibrosis via decreased tregs and monocytes[J]. Adv Med Sci, 2024, 69(2): 303-311. DOI: 10.1016/j.advms.2024.07.004.

73.Qu X, Yi X, Zhong H, et al. Effect and mechanism of imbalance via Th9 cells and Th17/Treg cells in inflammatory and fibrotic phases of pulmonary fibrosis in mice[J]. Biotechnol Genet Eng Rev, 2024, 40(3): 3007-3017. DOI: 10.1080/02648725.2023.2203002.

74.Wang B, Bai W, Ma H, et al. Regulatory effect of PD1/PD-ligand 1 (PD-L1) on treg cells in patients with idiopathic pulmonary fibrosis[J]. Med Sci Monit, 2021, 27: e927577. DOI: 10.12659/MSM.927577.

75.Karampitsakos T, Galaris A, Chrysikos S, et al. Expression of PD-1/PD-L1 axis in mediastinal lymph nodes and lung tissue of human and experimental lung fibrosis indicates a potential therapeutic target for idiopathic pulmonary fibrosis[J]. Respir Res, 2023, 24(1): 279. DOI: 10.1186/s12931-023-02551-x.

76.Guan R, Yuan L, Li J, et al. Bone morphogenetic protein 4 inhibits pulmonary fibrosis by modulating cellular senescence and mitophagy in lung fibroblasts[J]. Eur Respir J, 2022, 60(6): 2102307. DOI: 10.1183/13993003.02307-2021.

77.Zhang X, Li W, Li C, et al. Chemotherapy in idiopathic pulmonary fibrosis and small-cell lung cancer with poor lung function[J]. BMC Pulm Med, 2021, 21(1): 122. DOI: 10.1186/s12890-021-01489-4.

78.Wu W, Jia H, Chen S, et al. Inhibition of OGG1 ameliorates pulmonary fibrosis via preventing M2 macrophage polarization and activating PINK1-mediated mitophagy[J]. Mol Med, 2024, 30(1): 72. DOI: 10.1186/s10020-024-00843-6.

79.Wu Q, Jiao B, Gui W, et al. Long non-coding RNA SNHG1 promotes fibroblast-to-myofibroblast transition during the development of pulmonary fibrosis induced by silica particles exposure[J]. Ecotoxicol Environ Saf, 2021, 228: 112938. DOI: 10.1016/j.ecoenv.2021.112938.

80.Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs[J]. Nat Rev Mater, 2023, 8(4): 282-300. DOI: 10.1038/s41578-022-00529-7.

81.Li D, Zhao A, Zhu J, et al. Inhaled lipid nanoparticles alleviate established pulmonary fibrosis[J]. Small, 2023, 19(30): e2300545. DOI: 10.1002/smll.202300545.

82.Zheng D, Guo J, Liang Z, et al. Supramolecular nanofibers ameliorate bleomycin-induced pulmonary fibrosis by restoring autophagy[J]. Adv Sci (Weinh), 2024, 11(28): e2401327. DOI: 10.1002/advs.202401327.

83.Massaro M, Wu S, Baudo G, et al. Lipid nanoparticle-mediated mRNA delivery in lung fibrosis[J]. Eur J Pharm Sci, 2023, 183: 106370. DOI: 10.1016/j.ejps.2023.106370.

84.Bai X, Chen Q, Li F, et al. Optimized inhaled LNP formulation for enhanced treatment of idiopathic pulmonary fibrosis via mRNA-mediated antibody therapy[J]. Nat Commun, 2024, 15(1): 6844. DOI: 10.1038/s41467-024-51056-8.

85.Chen Z, Yang J, Zhang Q, et al. Inhalable myofibroblast targeting nanoparticles for synergistic treatment of pulmonary fibrosis[J]. Sci Adv, 2025, 11(18): eadv9571. DOI: 10.1126/sciadv.adv9571.

86.Lu A, Xu Z, Zhao Z, et al. Double braking effects of nanomedicine on mitochondrial permeability transition pore for treating idiopathic pulmonary fibrosis[J]. Adv Sci (Weinh), 2024, 11(47): e2405406. DOI: 10.1002/advs.202405406.