Organoid is a new research tool that has gradually emerged in recent years. They promise to have a broad application prospect in the fields of disease development, drug screening, new drug development, per-sonalized medicine and other fields. Nowadays, the colorectal cancer organoid model has become relatively mature. This paper reviews the common models in colorectal cancer research and the construction and applica-tion of colorectal cancer organoids.
HomeArticlesVol 33,2023 No.1Detail
Application of organoid models in colorectal cancer research
Published on Feb. 25, 2023Total Views: 4327 timesTotal Downloads: 1784 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and de-terminants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
2.Barbáchano A, Fernández-Barral A, Bustamante-Madrid P, et al. Organoids and colorectal cancer[J]. Cancers (Basel), 2021, 13(11): 2657. DOI: 10.3390/cancers13112657.
3.Zhu G, Cheng Z, Huang Y, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NFkappaB/AP1 signaling pathway[J]. Int J Mol Med, 2020, 45(1): 131-140. DOI: 10.3892/ijmm.2019.4390.
4.Kapalczynska M, Kolenda T, Przybyla W, et al. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures[J]. Arch Med Sci, 2018, 14(4): 910-919. DOI: 10.5114/aoms.2016.63743.
5.Chartier LC, Howarth GS, Lawrance IC, et al. Emu oil improves clinical indicators of disease in a mouse model of colitis-associated colorectal cancer[J]. Dig Dis Sci, 2018, 63(1): 135-145. DOI: 10.1007/s10620-017-4876-4.
6.DE-Souza A, Costa-Casagrande TA. Animal models for colorectal cancer[J]. Arq Bras Cir Dig, 2018, 31(2): e1369.DOI: 10.1590/0102-672020180001e1369.
7.Xie J, Lin Y. Patient-derived xenograft models for personalized medicine in colorectal cancer[J]. Clin Exp Med, 2020, 20(2): 167-172. DOI: 10.1007/s10238-020-00609-4.
8.Rivera M, Fichtner I, Wulf-Goldenberg A, et al. Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine[J]. Neoplasia, 2021, 23(1): 21-35. DOI: 10.1016/j.neo.2020.11.005.
9.Marshall LJ, Triunfol M, Seidle T. Patient-derived xenograft vs. organoids: a preliminary analysis of cancer research output, funding and human health impact in 2014-2019[J]. Animals (Basel), 2020, 10(10): 1923. DOI: 10.3390/ani10101923.
10.Wang T, Pan W, Zheng H, et al. Accuracy of using a patient-derived tumor organoid culture model to predict the response to chemotherapy regimens in stage iv colorectal cancer: a blinded study[J]. Dis Colon Rectum, 2021, 64(7): 833-850. DOI: 10.1097/DCR.0000000000001971.
11.Luo L, Ma Y, Zheng Y, et al. Application progress of organoids in colorectal cancer[J]. Front Cell Dev Biol, 2022, 10: 815067. DOI: 10.3389/fcell.2022.815067.
12.van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945.DOI: 10.1016/j.cell.2015.03.053.
13.Ye W, Luo C, Li C, et al. Organoids to study immune functions, immunological diseases and immuno-therapy[J]. Cancer Lett, 2020, 477: 31-40. DOI: 10.1016/j.canlet. 2020.02.027.
14.Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378): 920-926. DOI: 10.1126/science.aao2774.
15.Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7): 1972-1988. DOI: 10.1016/j.cell.2018.11.021.
16.Li X, Ootani A, Kuo C. An air-liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues[J]. Methods Mol Biol, 2016, 1422: 33-40. DOI: 10.1007/978-1-4939-3603-8_4.
17.Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated en-gineering of human intestinal organoids[J]. Nat Med, 2015, 21(3): 256-262. DOI: 10.1038/nm.3802.
18.Fumagalli A, Drost J, Suijkerbuijk SJ, et al. Genetic dissection of colorectal cancer progression by or-thotopic transplantation of engineered cancer organoids[J]. Proc Natl Acad Sci USA, 2017, 114(12): E2357-E2364. DOI: 10.1073/pnas.1701219114.
19.Szvicsek Z, Oszvald A, Szabo L, et al. Extracellular vesicle release from intestinal organoids is modu-lated by Apc mutation and other colorectal cancer progression factors[J]. Cell Mol Life Sci, 2019, 76(12): 2463-2476. DOI: 10.1007/s00018-019-03052-1.
20.Ponsioen B, Post JB, Buissant DAJ, et al. Quantifying single-cell ERK dynamics in colorectal cancer or-ganoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling[J]. Nat Cell Biol, 2021, 23(4): 377-390.DOI: 10.1038/s41556-021-00654-5.
21.Dijkstra KK, Cattaneo CM, Weeber F, et al. Generation of tumor-reactive t cells by co-culture of pe-ripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6): 1586-1598. DOI: 10.1016/j.cell.2018.07.009.
22.Rogoz A, Reis BS, Karssemeijer RA, et al. A 3-D enteroid-based model to study T-cell and epithelial cell interaction[J]. J Immunol Methods, 2015, 421: 89-95. DOI: 10.1016/j.jim.2015.03.014.
23.Qin X, Sufi J, Vlckova P, et al. Cell-type-specific signaling networks in heterocellular organoids[J]. Nat Methods, 2020, 17(3): 335-342. DOI: 10.1038/s41592-020-0737-8.
24.Nozaki K, Mochizuki W, Matsumoto Y, et al. Co-culture with intestinal epithelial organoids allows effi-cient expansion and motility analysis of intraepithelial lymphocytes[J]. J Gastroenterol, 2016, 51(3): 206-213.DOI: 10.1007/s00535-016-1170-8.
25.Usui T, Sakurai M, Enjoji S, et al. Establishment of a novel model for anticancer drug resistance in three-dimensional primary culture of tumor microenvironment[J]. Stem Cells Int, 2016, 2016: 7053872. DOI: 10.1155/2016/7053872.
26.Cho YH, Ro EJ, Yoon JS, et al. 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/beta-catenin pathway activation[J]. Nat Commun, 2020, 11(1): 5321.DOI: 10.1038/s41467-020-19173-2.
27.Ganesh K, Wu C, O'Rourke KP, et al. A rectal cancer organoid platform to study individual responses to chemoradiation[J]. Nat Med, 2019, 25(10): 1607-1614.DOI: 10.1038/s41591-019-0584-2.
28.Pauli C, Hopkins BD, Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine[J]. Cancer Discov, 2017, 7(5): 462-477. DOI: 10.1158/2159-8290.CD-16-1154.
29.Costales-Carrera A, Fernandez-Barral A, Bustamante-Madrid P, et al. Plocabulin displays strong cyto-toxic activity in a personalized colon cancer patient-derived 3D organoid assay[J]. Mar Drugs, 2019, 17(11): 648. DOI: 10.3390/md17110648.
30.Fernandez-Barral A, Costales-Carrera A, Buira SP, et al. Vitamin D differentially regulates colon stem cells in patient-derived normal and tumor organoids[J]. FEBS J, 2020, 287(1): 53-72. DOI: 10.1111/febs.14998.
31.Elbadawy M, Hayashi K, Ayame H, et al. Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids[J]. Biomed Pharmacother, 2021, 142: 112043. DOI: 10.1016/j.biopha.2021.112043.
32.Narasimhan V, Wright JA, Churchill M, et al. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy[J]. Clin Cancer Res, 2020, 26(14): 3662-3670.DOI: 10.1158/1078-0432.CCR-20-0073.
33.Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally ad-vanced rectal cancer[J]. Cell Stem Cell, 2020, 26(1): 17-26. DOI: 10.1016/j.stem.2019.10.010.
34.Yan H, Siu HC, Ho SL, et al. Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles[J]. Gut, 2020, 69(12): 2165-2179. DOI: 10.1136/gutjnl-2019-320019.
35.Yao L, Zao XL, Pan XF, et al. Application of tumoroids derived from advanced colorectal cancer pa-tients to predict individual response to chemotherapy[J]. J Chemother, 2022, 1-13. DOI: 10.1080/1120009X.2022.2045827.
36.Li X, Larsson P, Ljuslinder I, et al. Ex vivo organoid cultures reveal the importance of the tumor micro-environment for maintenance of colorectal cancer stem cells[J]. Cancers (Basel), 2020, 12(4): 923. DOI: 10.3390/cancers12040923.
37.Zheng L, Wang B, Sun Y, et al. An oxygen-concentration-controllable multiorgan microfluidic platform for studying hypoxia-induced lung cancer-liver metastasis and screening drugs[J]. ACS Sens, 2021, 6(3): 823-832. DOI: 10.1021/acssensors.0c01846.
38.Lau HCH, Kranenburg O, Xiao H, et al. Organoid models of gastrointestinal cancers in basic and translational research[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(4): 203-222. DOI: 10.1038/s41575-019-0255-2.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20242582
-
Development situation and expert suggestion on "Internet+Traditional Chinese Medicine" in China
Jun. 01, 20242268
-
Analysis of the relationship between home skin care associated factors and disease severity for children with atopic dermatitis
Jun. 01, 20242008
-
Mechanism of ALKBH5 mediated m6A regulation of Galectin-9 in the invasion, migration, and proliferation of endometrial stromal cell
Jun. 01, 20241831
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20241737
-
Analysis of the disease burden of benign prostatic hyperplasia in China, the United States and Germany at 1990 and 2019
Jun. 01, 20241596
-
Risk factors and prediction model construction for poor outcome in asthma combined with severe community-acquired pneumonia in children
Jun. 01, 20241541
-
Relationship and potential mechanisms between gut microbiota and benign prostatic hyperplasia
Jun. 01, 20241417