Welcome to visit Zhongnan Medical Journal Press Series journal website!

Identification of potential drug targets for restless legs syndrome by Mendelian randomization analysis based on plasma proteomics

Published on Oct. 31, 2025Total Views: 52 timesTotal Downloads: 17 timesDownloadMobile

Author: ZHANG Qinli 1 XU Hua 2 HAN Xiuyan 2 LIU Hong 1

Affiliation: 1. Department of Neurology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi Province, China 2. The First Clinical College, Changzhi Medical College, Changzhi 046000, Shanxi Province, China

Keywords: Restless legs syndrome Mendelian randomization Drug targets Plasma proteomics

DOI: 10.12173/j.issn.1004-5511.202411241

Reference: Zhang QL, Xu H, Han XY, Liu H. Identification of potential drug targets for restless legs syndrome by Mendelian randomization analysis based on plasma proteomics[J]. Yixue Xinzhi Zazhi, 2025, 35(10): 1181-1187. DOI: 10.12173/j.issn.1004-5511.202411241. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To evaluate the causal relationship between plasma proteins and restless legs syndrome (RLS) by proteome-wide Mendelian randomization (MR) and to explore new therapeutic targets for RLS.

Methods  Genome-wide association studies (GWAS) data of plasma proteins were obtained from the UK Biobank, and GWAS data of RLS were extracted from the FinnGen R11 database. Colocalization analysis was performed to identify the common causal variants between plasma proteins and RLS.

Results  MR analysis showed that plasma proteins ASPSCR1 [OR=0.678, 95%CI (0.544, 0.847)] and C1QTNF5 [OR=0.526, 95%CI (0.367, 0.752)] had a protective effect on RLS; plasma proteins KRT19 [OR=1.769, 95%CI (1.283, 2.439)] and LAT2 [OR=5.536, 95%CI (2.206, 13.893)] were associated with the increased risk of RLS. Colocalization analysis showed that among the 4 plasma proteins, LAT2 had a strong causal variation relationship, while ASPSCR1, C1QTNF5, and KRT19 had a moderate causal variation relationship. The protein functional network suggested that protein-associated genes related to RLS were significantly enriched in sugar transmembrane transporter activity, carbohydrate transmembrane transport activity, and Fc receptor signaling pathway.

Conclusion  This study identifies the causal relationship between 4 plasma proteins and RLS, which provides potential therapeutic targets for the treatment of RLS, but further studies are needed to confirm it.

Full-text
Please download the PDF version to read the full text: download
References

1.Garcia-Malo C, Romero-Peralta S, Cano-Pumarega I. Restless legs syndrome-clinical features[J]. Sleep Med Clin, 2021, 16(2): 233-247. DOI: 10.1016/j.jsmc.2021.02.002.

2.Xue R, Liu G, Ma S, et al. An epidemiologic study of restless legs syndrome among Chinese children and adolescents [J]. Neurol Sci, 2015, 36(6): 971-976. DOI: 10.1007/s10072-015-2206-1.

3.Chen NH, Chuang LP, Yang CT, et al. The prevalence of restless legs syndrome in Taiwanese adults[J]. Psychiatry Clin Neurosci, 2010, 64(2): 170-178. DOI: 10.1111/j.1440-1819.2010.02067.x.

4.Shi Y, Yu H, Ding D, et al. Prevalence and risk factors of restless legs syndrome among Chinese adults in a rural community of Shanghai in China [J]. PLoS One, 2015, 10(3): e0121215. DOI: 10.1371/journal.pone.0121215.

5.Manconi M, Garcia-Borreguero D, Schormair B, et al. Restless legs syndrome[J]. Nat Rev Dis Primers, 2021, 7(1): 80. DOI: 10.1038/s41572-021-00311-z.

6.张茜, 陈项婷, 周长青. 药物治疗不宁腿综合征有效性和安全性的网状Meta分析[J]. 中国循证医学杂志, 2022, 22(8): 908-916. [Zhang Q, Chen XT, Zhou CQ. Network Meta-analysis on the efficacy and safety of pharmacotherapy for restless legs syndrome[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(8): 908-916.] DOI: 10.7507/1672-2531.202202051.

7.Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome[J]. Nature, 2018, 558(7708): 73-79. DOI: 10.1038/s41586-018-0175-2.

8.Huang W, Xiao J, Ji J, et al. Association of lipid-lowering drugs with COVID-19 outcomes from a Mendelian randomization study[J]. Elife, 2021, 10: e73873. DOI: 10.7554/eLife.73873.

9.Storm CS, Kia DA, Almramhi MM et al. Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome[J]. Nat Commun, 2021, 12(1): 7342. DOI: 10.1038/s41467-021-26280-1.

10.Fauman EB, Hyde C. An optimal variant to gene distance window derived from an empirical definition of cis and trans protein QTLs[J]. BMC Bioinformatics, 2022, 23(1): 169. DOI: 10.1186/s12859-022-04706-x.

11.Ference BA. Interpreting the clinical implications of drug-target Mendelian randomization studies[J]. J Am Coll Cardiol, 2022, 80(7): 663-665. DOI: 10.1016/j.jacc.2022.06.007.

12.Mälarstig A, Grassmann F, Dahl L, et al. Evaluation of circulating plasma proteins in breast cancer using Mendelian randomisation[J]. Nat Commun, 2023, 14(1): 7680. DOI: 10.1038/s41467-023-43485-8.

13.Walker VM, Zheng J, Gaunt TR, et al. Phenotypic causal inference using genome-wide association study data: Mendelian randomization and beyond[J]. Annu Rev Biomed Data Sci, 2022, 5: 1-17. DOI: 10.1146/annurev-biodatasci-122120-024910.

14.Sun BB, Chiou J, Traylor M, et al. Plasma proteomic associations with genetics and health in the UK Biobank[J]. Nature, 2023, 622(7982): 329-338. DOI: 10.1038/s41586-023-06592-6.

15.Hou Y, Xiao Z, Zhu Y, et al. Blood metabolites and chronic kidney disease: a Mendelian randomization study[J]. BMC Med Genomics, 2024, 17(1): 147. DOI: 10.1186/s12920-024-01918-3.

16.Chen Y, Shen J, Wu Y, et al. Tea consumption and risk of lower respiratory tract infections: a two-sample Mendelian randomization study[J]. Eur J Nutr, 2023, 62(1): 385-393. DOI: 10.1007/s00394-022-02994-w.

17.Wu J, Fan Q, He Q, et al. Potential drug targets for myocardial infarction identified through Mendelian randomization analysis and genetic colocalization[J]. Med (Baltimore), 2023, 102(49): e36284. DOI: 10.1097/MD.0000000000036284.

18.Fan J, Zhou Y, Meng R, et al. Cross-talks between gut microbiota and tobacco smoking: a two-sample Mendelian randomization study[J]. BMC Med, 2023, 21(1): 163. DOI: 10.1186/s12916-023-02863-1.

19.Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22): 4851-4853. DOI: 10.1093/bioinformatics/btz469.

20.Giambartolomei C, Vukcevic D, SChadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J]. PloS Genet, 2014, 10(5): e1004383. DOI: 10.1371/journal.pgen.1004383.

21.Sun J, Zhao J, Jiang F, et al. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome[J]. Genomme Med, 2023, 15(1): 75. DOI: 10.1186/s13073-023-01229-9.

22.Yuan S, Xu F, Li X, et al. Plasma proteins and onset of type 2 diabetes and diabetic complications: proteome-wide Mendelian randomization and colocalization analyses[J]. Cell Rep Med, 2023, 4(9): 101174. DOI: 10.1016/j.xcrm.2023.101174.

23.Habtemichael EN, Li DT, Camporez JP, et al. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake[J]. Nat Metab, 2021, 3(3): 378-393. DOI: 10.1038/s42255-021-00359-x.

24.Bogan JS, Hendon N, McKee AE, et al. Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking[J]. Nature, 2003, 425(6959): 727-733. DOI: 10.1038/nature01989.

25.Schaffler A, Buechler C. CTRP family: linking immunity to metabolism[J]. Trends Endocrinol Metab, 2012, 23(4): 194-204. DOI: 10.1016/j.tem.2011.12.003.

26.Mirghani H. Restless legs syndrome among sudanese patients with type 2 diabetes mellitus: a case-control study[J]. Cureus, 2020, 12: e9635. DOI: 10.7759/cureus.9635.

27.Dauvilliers Y, Winkelmann J. Restless legs syndrome: update on pathogenesis[J]. Curr Opin Pulm Med, 2013, 19: 594-600. DOI: 10.1097/MCP.0b013e328365ab07.

28.Jiménez-Jiménez FJ, Alonso-Navarro H, et al. Neurochemical features of idiopathic restless legs syndrome[J]. Sleep Med Rev, 2019, 45: 70-87. DOI: 10.1016/j.smrv.2019.03.006.

29.Moll R, Divo M, Langbein L. The human keratins: biology and pathology[J]. Histochem Cell Biol, 2008, 129(6): 705-733. DOI: 10.1007/s00418-008-0435-6.

30.Han S, Fan H, Zhong G, et al. Nuclear KRT19 is a transcriptional corepressor promoting histone deacetylation and liver tumorigenesis[J]. Hepatology, 2025, 81(3): 808-822. DOI: 10.1097/HEP.0000000000000875.

31.Singh S, Patel NA, Soundararajan A, et al. High glucose-induced transcriptomic changes in human trabecular meshwork cells[J]. Res Sq, 2024, 24: rs.3. DOI: 10.21203/rs.3.rs-5690041/v1.

32.ThoméCH , dos Santos GA, Ferreira GA, et al. Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity[J]. Mol Cell Proteomics, 2012, 11(12): 1898-1912. DOI: 10.1074/mcp.M112.019661.

33.Whittaker GC, Orr SJ, Quigley L, et al. The linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) regulates triggering receptor expressed on myeloid cells (TREM)-2 signaling and macrophage inflammatory responses independently of the linker for activation of T cells[J]. J Biol Chem, 2010, 285(5): 2976-2985. DOI: 10.1074/jbc.M109.038398.

34.Walters AS, Rye DB. Review of the relationship of restless legs syndrome and periodic limb movements in sleep to hypertension, heart disease, and stroke[J]. Sleep, 2009, 32(5): 589-597. DOI: 10.1093/sleep/32.5.589.

35.Pedersini R, di Mauro P, Amoroso V, et al. Sleep disturbances and restless legs syndrome in postmenopausal women with early breast cancer given adjuvant aromatase inhibitor therapy[J]. Breast, 2022, 66: 162-168. DOI: 10.1016/j.breast.2022.10.006.

36.Trenkwalder C, Paulus W. Restless legs syndrome: pathophysiology, clinical presentation and management[J]. Nat Rev Neurol, 2010, 6(6): 337-346. DOI: 10.1038/nrneurol.2010.55.

37.Narbona-Sánchez I, Pérez-Linaza A, Serrano-García I, et al. Expression of non-T cell activation linker (NTAL) in jurkat cells negatively regulates TCR signaling: potential role in rheumatoid arthritis[J]. Int J Mol Sci, 2023, 24(5): 4574. DOI: 10.3390/ijms24054574.

38.Qian R, Zhao X, Lyu D, et al. Identification of causal genes and potential drug targets for restless legs syndrome: a comprehensive Mendelian randomization study[J]. Pharmaceuticals (Basel), 2024, 17: 1626. DOI: 10.3390/ph17121626.