Welcome to visit Zhongnan Medical Journal Press Series journal website!

Effect and mechanism of FOXP1 on the viability and apoptosis of cisplatin resistant cervical cancer cells

Published on Sep. 26, 2025Total Views: 23 timesTotal Downloads: 12 timesDownloadMobile

Author: WANG Xiao DONG Qianjing

Affiliation: Department of Obstetrics, Shaanxi Provincial People’s Hospital, Xi’an 710068, China

Keywords: FOXP1 Cervical cancer Drug resistance Apoptosis Autophagy Wnt/β-catenin signaling

DOI: 10.12173/j.issn.1004-5511.202411179

Reference: Wang X, Dong QJ. Effect and mechanism of FOXP1 on the viability and apoptosis of cisplatin resistant cervical cancer cells[J]. Yixue Xinzhi Zazhi, 2025, 35(9): 1057-1065. DOI: 10.12173/j.issn.1004-5511.202411179. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the effect and underlying mechanism of fork-head box protein 1 (FOXP1) on the viability and apoptosis of cisplatin (DDP) resistant cervical cancer cells.

Methods  Construction of FOXP1 interference DDP-resistant cervical cancer cell models using siRNA. Cell viability was assessed using CCK-8 assay, apoptosis was measured by flow cytometry, autophagy levels were detected via LC3 immunofluorescence, and changes in autophagy-related proteins and Wnt/β-catenin signaling pathway components were analyzed by Western blot. Functional rescue experiments were performed using the autophagy activator rapamycin (RAPA) or the Wnt pathway activator SKL2001 in FOXP1-silenced HeLa/DDP cells.

Results  Compared to normal cervical cancer cells, FOXP1 was highly expressed in DDP-resistant HeLa/DDP and SiHa/DDP cells. Inhibition of FOXP1 significantly reduced the cellular activity of HeLa/DDP and SiHa/DDP, elevated the sensitivity of cells to DDP, and promoted apoptosis. Additionally, FOXP1 silencing downregulated LC3-II and Beclin-1 protein expression while upregulating LC3-I and p62, indicating suppressed autophagy and Wnt/β-catenin signaling activation. These effects were partially reversed by RAPA or SKL2001 treatment.

Conclusion  FOXP1 can elevate autophagy to reduce the sensitivity of cervical cancer DDP-resistant cell lines HeLa/DDP and SiHa/DDP to DDP by activating the Wnt/β-catenin signalling pathway.

Full-text
Please download the PDF version to read the full text: download
References

1.Buskwofie A, David-West G, Clare CA. A review of cervical cancer: incidence and disparities[J]. J Natl Med Assoc, 2020, 112(2): 229-232. DOI: 10.1016/j.jnma.2020.03.002.

2.戴琼芳,罗欢,程岚,等. 宫颈癌患者性健康管理的最佳证据总结[J]. 数理医药学杂志, 2024, 37(8): 619-629. [Dai QF, Luo H, Cheng L, et al. Sexual health management in cervical cancer patients: best evidence summary[J]. Journal of Mathematical Medicine, 2024, 37(8): 619-629.] DOI: 10.12173/j.issn.1004-4337.202404109.

3.Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy[J]. Radiol Oncol, 2019, 53(2): 148-158. DOI: 10.2478/raon-2019-0018.

4.Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders[J]. Wiley Interdiscip Rev Dev Biol, 2020, 9(5): e375. DOI: 10.1002/wdev.375.

5.Kim JH, Hwang J, Jung JH, et al. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression[J]. Mol Cancer, 2019, 18(1): 180. DOI: 10.1186/s12943-019-1110-3.

6.Hu Z, Cai M, Zhang Y, et al. miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway[J]. Cell Cycle, 2020, 19(2): 193-206. DOI: 10.1080/15384101.2019.1704537.

7.Xia X, Li Z, Li Y, et al. LncRNA XIST promotes carboplatin resistance of ovarian cancer through activating autophagy via targeting miR-506-3p/FOXP1 axis[J]. J Gynecol Oncol, 2022, 33(6): e81. DOI: 10.3802/jgo.2022.33.e81.

8.Levavasseur F, Oussous S, Zubaidan T, et al. FOXP1 regulates oxidative stress, SIRT1 expression, and resistance to chemotherapies in acute myeloid leukemia cells[J]. Blood Adv, 2023, 7(13): 3265-3275. DOI: 10.1182/bloodadvances. 2022008585.

9.Yang Q, Jiang W, Li L, et al. Forkhead box protein P1 is a useful marker for the diagnosis of mucinous minimal deviation adenocarcinoma of uterine cervix[J]. Ann Diagn Pathol, 2014, 18(4): 232-237. DOI: 10.1016/j.anndiagpath.2014.04.003.

10.Cheng L, Shi X, Huo D, et al. MiR-449b-5p regulates cell proliferation, migration and radioresistance in cervical cancer by interacting with the transcription suppressor FOXP1[J]. Eur J Pharmacol, 2019, 856: 172399. DOI: 10.1016/j.ejphar.2019. 05.028.

11.Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective[J]. Drug Resist Updat, 2021, 59: 100796. DOI: 10.1016/j.drup.2021.100796.

12.姚梦圆, 温敏, 黄正元, 等. 丁苯酞调节PI3K/Akt/CREB信号通路对顺铂诱导的PC12细胞炎症和凋亡的影响 [J]. 药学前沿, 2025, 29(5): 721-729. [Yao MY, Wen  M, Huang  ZY, et al. The effect of butylphthalein regulating the PI3K/Akt/CREB signaling pathway on cisplatin-induced inflammation and apoptosis in PC12 cells[J]. Frontiers in Pharmaceutical Sciences, 2025, 29(5): 721-729.] DOI: 10.12173/j.issn.2097-4922. 202502073.

13.张玉清, 邢惠海, 刘立秋, 等. miR-196b调控PI3K/Akt通路对宫颈癌细胞顺铂耐药的影响研究[J]. 中国免疫学杂志, 2021, 37(23): 2865-2870. [Zhang YQ, Xing HH, Liu LQ, et al. Effect of miR-196b on cisplatin resistance of cervical cancer cells by regulating PI3K/Akt pathway[J]. Chinese Journal of Immunology, 2021, 37(23): 2865-2870.] DOI: 10.3969/j.issn.1000-484X.2021.23.010.

14.Li H, Han X, Yang S, et al. FOXP1 drives osteosarcoma development by repressing P21 and RB transcription downstream of P53[J]. Oncogene, 2021, 40(15): 2785-2802. DOI: 10.1038/s41388-021-01742-4.

15.Panigrahi SK, Broustas CG, Cuiper PQ, et al. FOXP1 and NDRG1 act differentially as downstream effectors of RAD9-mediated prostate cancer cell functions[J]. Cell Signal, 2021, 86: 110091. DOI: 10.1016/j.cellsig.2021.110091.

16.Hu Z, Zhu L, Gao J, et al. Expression of FOXP1 in epithelial ovarian cancer (EOC) and its correlation with chemotherapy resistance and prognosis[J]. Tumour Biol, 2015, 36(9): 7269-7275. DOI: 10.1007/s13277-015-3383-5.

17.He J, Yang Z, Wu Z, et al. Expression of FOXP1 and FOXO3a in extrahepatic cholangiocarcinoma and the implications in clinicopathological significance and prognosis[J]. Onco Targets Ther, 2019, 12: 2955-2965. DOI: 10.2147/OTT.S197001.

18.Chen Z, Wang T, Li C, et al. FOXP1-GINS1 axis promotes DLBCL proliferation and directs doxorubicin resistance[J]. J Cancer, 2023, 14(12): 2289-2300. DOI: 10.7150/jca.85906.

19.Wang B, Li D, Filkowski J, et al. A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382[J]. Oncogenesis, 2018, 7(7): 54. DOI: 10.1038/s41389-018-0063-5.

20.Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863. DOI: 10.15252/embj.2021108863.

21.Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8): 560-575. DOI: 10.1038/s41580-023-00585-z.

22.Zamame Ramirez JA, Romagnoli GG, Kaneno R. Inhibiting autophagy to prevent drug resistance and improve anti-tumor therapy[J]. Life Sci, 2021, 265: 118745. DOI: 10.1016/j.lfs.2020.118745.

23.Peng X, Gong F, Chen Y, et al. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-alpha-mediated signaling[J]. Cell Death Dis, 2014, 5(8): e1367. DOI: 10.1038/cddis.2014.297.

24.Huang H, Han Q, Zheng H, et al. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer[J]. Cell Death Dis, 2021, 13(1): 13. DOI: 10.1038/s41419-021-04474-1.

25.Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1-2): 11-42. DOI: 10.1016/j.cell.2018.09.048.

26.Xu HD, Qin ZH. Beclin 1, Bcl-2 and autophagy[J]. Adv Exp Med Biol, 2019, 1206: 109-126. DOI: 10.1007/978-981-15-0602-4_5.

27.Turco E, Savova A, Gere F, et al. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation[J]. Nat Commun, 2021, 12(1): 5212. DOI: 10.1038/s41467-021-25572-w.

28.Walker MP, Stopford CM, Cederlund M, et al. FOXP1 potentiates Wnt/beta-catenin signaling in diffuse large B cell lymphoma[J]. Sci Signal, 2015, 8(362): ra12. DOI: 10.1126/scisignal.2005654.

29.Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer[J]. J Hematol Oncol, 2020, 13(1): 165. DOI: 10.1186/s13045-020-00990-3.

30.Zhou C, Yi C, Yi Y, et al. LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/beta-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes[J]. Mol Cancer, 2020, 19(1): 118. DOI: 10.1186/s12943-020-01237-y.

31.Wu Q, Ma J, Wei J, et al. lncRNA SNHG11 promotes gastric cancer progression by activating the wnt/beta-catenin pathway and oncogenic autophagy[J]. Mol Ther, 2021, 29(3): 1258-1278. DOI: 10.1016/j.ymthe.2020.10.011.

32.张月阳, 刘青松, 邓琳, 等. 宫颈癌细胞自噬与Wnt/β-catenin信号通路关系的研究进展[J]. 现代肿瘤医学, 2022, 30(14): 2639-2642. [Zhang YY, Liu QS, Deng L, et al. Review of the relationship between autophagy and Wnt/β-catenin signal pathway in cervical cancer[J]. Journal of Modern Oncology, 2022, 30(14): 2639-2642.] DOI: 10.3969/j.issn.1672-4992.2022.14.034.

33.Chi C, Hou W, Zhang Y, et al. PDHB-AS suppresses cervical cancer progression and cisplatin resistance via inhibition on Wnt/beta-catenin pathway[J]. Cell Death Dis, 2023, 14(2): 90. DOI: 10.1038/s41419-022-05547-5.

34.Wang T, Liu Z, Shi F, et al. Pin1 modulates chemo-resistance by up-regulating FoxM1 and the involvements of Wnt/beta-catenin signaling pathway in cervical cancer[J]. Mol Cell Biochem, 2016, 413(1-2): 179-187. DOI: 10.1007/s11010-015-2651-4.