1.Bruner LP, White AM, Proksell S. Inflammatory bowel disease[J]. Prim Care, 2023, 50(3): 411-427. DOI: 10.1016/j.pop.2023.03.009.
2.Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 56-66. DOI: 10.1038/s41575-020-00360-x.
3.Chauhan G, Rieder F. The pathogenesis of inflammatory bowel diseases[J]. Surg Clin North Am, 2025, 105(2): 201-215. DOI: 10.1016/j.suc.2024.10.008.
4.Singh N, Bernstein CN. Environmental risk factors for inflammatory bowel disease[J]. United European Gastroenterol J, 2022, 10(10): 1047-1053. DOI: 10.1002/ueg2.12319.
5.Piovani D, Danese S, Peyrin-Biroulet L, et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of Meta-analyses[J]. Gastroenterology, 2019, 157(3): 647-659. e4. DOI: 10.1053/j.gastro.2019.04.016.
6.Chen X, Zhang S, Wu X, et al. Inflammatory cytokines and oral lichen planus: a Mendelian randomization study[J]. Front Immunol, 2024, 15: 1332317. DOI: 10.3389/fimmu.2024.1332317.
7.Reza Lahimchi M, Eslami M, Yousefi B. Interleukin-35 and interleukin-37 anti-inflammatory effect on inflammatory bowel disease: application of non-coding RNAs in IBD therapy[J]. Int Immunopharmacol, 2023, 117: 109932. DOI: 10.1016/j.intimp.2023.109932.
8.Fonseca-Camarillo G, Furuzawa-Carballeda J, Yamamoto-Furusho JK. Interleukin 35 (IL-35) and IL-37: intestinal and peripheral expression by T and B regulatory cells in patients with inflammatory bowel disease[J]. Cytokine, 2015, 75(2): 389-402. DOI: 10.1016/j.cyto.2015.04.009.
9.Fang G, Kong F, Zhang H, et al. Association between inflammatory bowel disease and interleukins, chemokines: a two-sample bidirectional Mendelian randomization study[J]. Front Immunol, 2023, 14: 1168188. DOI: 10.3389/fimmu.2023.1168188.
10.Nemeth ZH, Bogdanovski DA, Barratt-Stopper P, et al. Crohn's disease and ulcerative colitis show unique cytokine profiles[J]. Cureus, 2017, 9(4): e1177. DOI: 10.7759/cureus.1177.
11.Singh UP, Singh NP, Murphy EA, et al. Chemokine and cytokine levels in inflammatory bowel disease patients[J]. Cytokine, 2016, 77: 44-49. DOI: 10.1016/j.cyto.2015.10.008.
12.Qin C, Yu Q, Deng Z, et al. Causal relationship between the immune cells and ankylosing spondylitis: univariable, bidirectional, and multivariable Mendelian randomization[J]. Front Immunol, 2024, 15: 1345416. DOI: 10.3389/fimmu.2024.1345416.
13.Ahola-Olli AV, Würtz P, Havulinna AS, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors[J]. Am J Hum Genet, 2017, 100(1): 40-50. DOI: 10.1016/j.ajhg.2016.11.007.
14.Zhao JH, Stacey D, Eriksson N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9): 1540-1551. DOI: 10.1038/s41590-023-01588-w.
15.Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-518. DOI: 10.1038/s41586-022-05473-8.
16.Lin SH, Brown DW, Machiela MJ. LDtrait: an online tool for identifying published phenotype associations in linkage disequilibrium[J]. Cancer Res, 2020, 80(16): 3443-3446. DOI: 10.1158/0008-5472.CAN-20-0985.
17.Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J]. Int J Epidemiol, 2011, 40(3): 740-752. DOI: 10.1093/ije/dyq151.
18.Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. DOI: 10.1007/s10654-017-0255-x.
19.Ong JS, MacGregor S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner's perspective[J]. Genet Epidemiol, 2019, 43(6): 609-616. DOI: 10.1002/gepi.22207.
20.Luo S, Li W, Li Q, et al. Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study[J]. Front Cell Infect Microbiol, 2023, 13: 1160993. DOI: 10.3389/fcimb.2023.1160993.
21.Sanderson E. Multivariable Mendelian randomization and mediation[J]. Cold Spring Harb Perspect Med, 2021, 11(2): a038984. DOI: 10.1101/cshperspect.a038984.
22.Casadó-Llombart S, Velasco-de Andrés M, Català C, et al. Experimental and genetic evidence for the impact of CD5 and CD6 expression and variation in inflammatory bowel disease[J]. Front Immunol, 2022, 13: 966184. DOI: 10.3389/fimmu.2022.966184.
23.Zheng M, Zhang L, Yu H, et al. Genetic polymorphisms of cell adhesion molecules in Behcet's disease in a Chinese Han population[J]. Sci Rep, 2016, 6: 24974. DOI: 10.1038/srep24974.
24.Consuegra-Fernández M, Julià M, Martínez-Florensa M, et al. Genetic and experimental evidence for the involvement of the CD6 lymphocyte receptor in psoriasis[J]. Cell Mol Immunol, 2018, 15(10): 898-906. DOI: 10.1038/cmi.2017.119.
25.Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor[J]. J Exp Med, 1997, 186(12): 2075-2080. DOI: 10.1084/jem.186.12.2075.
26.Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J]. Cell, 1998, 93(2): 165-176. DOI: 10.1016/s0092-8674(00)81569-x.
27.Hanada R, Hanada T, Sigl V, et al. RANKL/RANK-beyond bones[J]. J Mol Med (Berl), 2011, 89(7): 647-656. DOI: 10.1007/s00109-011-0749-z.
28.Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12[J]. Cell Mol Immunol, 2018, 15(4): 299-311. DOI: 10.1038/cmi.2017.107.
29.Werner L, Guzner-Gur H, Dotan I. Involvement of CXCR4/CXCR7/CXCL12 interactions in inflammatory bowel disease[J]. Theranostics, 2013, 3(1): 40-46. DOI: 10.7150/thno.5135.
30.Xia XM, Wang FY, Zhou J, et al. CXCR4 antagonist AMD3100 modulates claudin expression and intestinal barrier function in experimental colitis[J]. PLoS One, 2011, 6(11): e27282. DOI: 10.1371/journal.pone.0027282.
31.Liu B, Qian Y, Li Y, et al. Circulating levels of cytokines and risk of inflammatory bowel disease: evidence from genetic data[J]. Front Immunol, 2023, 14: 1310086. DOI: 10.3389/fimmu.2023.1310086.
32.Caruso C. MIG in Crohn's disease[J]. Clin Ter, 2019, 170(3): e206-e210. DOI: 10.7417/ct.2019.2134.
33.Chen Z, Kim SJ, Essani AB, et al. Characterising the expression and function of CCL28 and its corresponding receptor, CCR10, in RA pathogenesis[J]. Ann Rheum Dis, 2015, 74(10): 1898-1906. DOI: 10.1136/annrheumdis-2013-204530.
34.Medina-Contreras O, Geem D, Laur O, et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice[J]. J Clin Invest, 2011, 121(12): 4787-4795. DOI: 10.1172/jci59150.
35.Xue H, Luo Q, Chen J, et al. Assessing the causal relationship between genetically determined inflammatory cytokines and Parkinson's disease risk: a bidirectional two-sample Mendelian randomization study[J]. J Immunol Res, 2024, 2024: 9069870. DOI: 10.1155/2024/9069870.