Welcome to visit Zhongnan Medical Journal Press Series journal website!

The effect of combined photodynamic therapy with α-melittin-PPIX-NP on the biological behavior of B16-F10 cells

Published on Sep. 26, 2025Total Views: 34 timesTotal Downloads: 12 timesDownloadMobile

Author: LI Sanrong 1 ZHANG Yan 1 XIAO Min 1 GENG Yuanyuan 2

Affiliation: 1. Department of Thyroid and Breast Surgery, Wuhan Red Cross Hospital, Wuhan 430015, China 2. College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China

Keywords: Melittin Photodynamic therapy Melanoma Hemolysis of red blood cells SR-B1 receptor Cell apoptosis Bone marrow-derived dendritic cells

DOI: 10.12173/j.issn.1004-5511.202409110

Reference: Li SR, Zhang Y, Xiao M, Geng YY. The effect of combined photodynamic therapy with α-melittin-PPIX-NP on the biological behavior of B16-F10 cells[J]. Yixue Xinzhi Zazhi, 2025, 35(9): 1048-1056. DOI: 10.12173/j.issn.1004-5511.202409110. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the inhibitory effect of melittin combined with photodynamic therapy (PDT) on the biological behavior of melanoma cells (B16-F10).

Methods  Nano-drug bee venom peptide photosensitive lipid nanoparticles (α-melittin-PPIX-NP) were prepared and characterized by hydrolysis method. The red blood cell hemolysis experiment verified the hemolytic side effects of melittin. CCK-8 was used to detect its ability to kill B16-F10 cells in combination with PDT. Western Blot was used to detect the expression of SR-B1 receptor protein in different cells. Flow cytometry was used to detect cell apoptosis, drug uptake by different cells, and in vitro activation of bone marrow-derived dendritic cells (BMDCs).

Results  The prepared α-melittin-PPIN-NP had uniform morphology and concentrated hydrated particle size distribution, which significantly reduced the side effects of erythrocyte hemolysis. α-melittin-PPIX-NP can efficiently target B16-F10 cells and inhibit the proliferation of tumor cells by activating BMDCs, and its effect is better when combined with near-infrared light (NIR).

Conclusion  PDT with α-melittin-PPIX-NP combined with NIR can promote the apoptosis of B16-F10 cells, activate BMDC, and effectively increase the anti-tumor immune effect.

Full-text
Please download the PDF version to read the full text: download
References

1.Arnold M, Singh D, Laversanne M, et al. Global burden of cutaneous melanoma in 2020 and projections to 2040[J]. JAMA Dermatol, 2022, 158(5): 495-503. DOI: 10.1001/jamadermatol.2022.0160.

2.Kocarnik JM, Compton K, Dean FE, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. JAMA Oncol, 2022, 8(3): 420-44. DOI: 10.1001/jamaoncol.2021.6987.

3.Krensel M, Schäfer I, Augustin M. Cost-of-illness of melanoma in Europe-a systematic review of the published literature[J]. J Eur Acad Dermatol Venereol, 2019, 33(3): 504-510. DOI: 10.1111/jdv.15315.

4.Meertens A, Van Coile L, Van Iseghem T, et al. Cost-of-illness of skin cancer: a systematic review[J]. Pharmacoeconomics, 2024, 42(7): 751-765. DOI: 10.1007/s40273-024-01389-5.

5.Duan X, Zou H, Yang J, et al. Melittin-incorporated nanomedicines for enhanced cancer immunotherapy[J]. J Control Release, 2024, 375: 285-299. DOI: 10.1016/j.jconrel.2024.08.047.

6.Bahreyni A, Liu H, Mohamud Y, et al. A combination of genetically engineered oncolytic virus and melittin-CpG for cancer viro-chemo-immunotherapy[J]. BMC Med, 2023, 21(1): 193. DOI: 10.1186/s12916-023-02901-y.

7.Huang C, Jin H, Qian Y, et al. Hybrid melittin cytolytic peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo[J]. ACS Nano, 2013, 7(7): 5791-5800. DOI: 10.1021/nn400683s.

8.Fung KYY, Ho TWW, Xu Z, et al. Apolipoprotein A1 and high-density lipoprotein limit low-density lipoprotein transcytosis by binding SR-B1[J]. J Lipid Res, 2024, 65(4): 100530. DOI: 10.1016/j.jlr.2024.100530.

9.Mooberry LK, Sabnis NA, Panchoo M, et al. Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging[J]. Front Pharmacol, 2016, 7: 466. DOI: 10.3389/fphar.2016.00466.

10.Huang B, Song BL, Xu C. Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities[J]. Nat Metab, 2020, 2(2): 132-141. DOI: 10.1038/s42255-020-0174-0.

11.Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy-mechanisms, photosensitizers and combinations[J]. Biomed Pharmacother, 2018, 106: 1098-1107. DOI: 10.1016/j.biopha.2018.07.049.

12.Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update[J]. CA Cancer J Clin, 2011, 61(4): 250-281. DOI: 10.3322/caac.20114.

13.Kolarikova M, Hosikova B, Dilenko H, et al. Photodynamic therapy: innovative approaches for antibacterial and anticancer treatments[J]. Med Res Rev, 2023, 43(4): 717-774. DOI: 10.1002/med.21935.

14.Li X, Lovell JF, Yoon J, et al. Clinical development and potential of photothermal and photodynamic therapies for cancer[J]. Nat Rev Clin Oncol, 2020, 17(11): 657-674. DOI: 10.1038/s41571-020-0410-2.

15.Zaimy MA, Saffarzadeh N, Mohammadi A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles[J]. Cancer Gene Ther, 2017, 24(6): 233-243. DOI: 10.1038/cgt.2017.16.

16.陈劲松,王丹. 肿瘤新抗原在肿瘤免疫治疗中的应用研究进展[J]. 解放军医学杂志, 2024, 49(10): 1213-1220. [Chen  JS, Wang D. Research progress of neoantigens in tumor immunotherapy[J]. Medical Journal of Chinese People's Liberation Army, 2024, 49(10): 1213-1220.] DOI: 10.11855/j.issn.0577-7402.1340.2024.0426.

17.Zahirović A, Luzar J, Molek P, et al. Bee venom immunotherapy: current status and future directions[J]. Clin Rev Allergy Immunol, 2020, 58(3): 326-341. DOI: 10.1007/s12016-019-08752-x.

18.Wehbe R, Frangieh J, Rima M, et al. Bee venom: overview of main compounds and bioactivities for therapeutic interests[J]. Molecules, 2019, 24(16): 2997. DOI: 10.3390/molecules24162997.

19.Wang A, Zheng Y, Zhu W, et al. Melittin-based nano-delivery systems for cancer therapy[J]. Biomolecules, 2022, 12(1): 118. DOI: 10.3390/biom12010118.

20.Muttenthaler M, King GF, Adams DJ, et al. Trends in peptide drug discovery[J]. Nat Rev Drug Discov, 2021, 20(4): 309-325. DOI: 10.1038/s41573-020-00135-8.

21.Otvos L. The latest trends in peptide drug discovery and future challenges[J]. Expert Opin Drug Discov, 2024, 19(8): 869-872. DOI: 10.1080/17460441.2024.2365969.

22.Wang C, Hong T, Cui P, et al. Antimicrobial peptides towards clinical application: delivery and formulation[J]. Adv Drug Deliv Rev, 2021, 175: 113818. DOI: 10.1016/j.addr.2021.05.028.

23.侴雯馨,孙天真,顾瑛,等. 光动力疗法的抗肿瘤免疫效应研究进展[J]. 解放军医学杂志, 2024, 49(6): 718-725. [Chou WX, Sun TZ, Gu Y, et al. Research progress on the immune effects of photodynamic therapy[J], Medical Journal of Chinese People's Liberation Army, 2024, 49(6): 718-725.] DOI: 10.11855/j.issn.0577-7402.0454.2023.0921.

24.Hou YJ, Yang XX, Liu RQ, et al. Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles[J]. Int J Nanomedicine, 2020, 15: 6827-6838. DOI: 10.2147/IJN.S269321.