Welcome to visit Zhongnan Medical Journal Press Series journal website!

Mendelian randomization study on the relationship between fibroblast growth factors and their receptors and the risk of spontaneous abortion

Published on Jun. 25, 2025Total Views: 65 timesTotal Downloads: 17 timesDownloadMobile

Author: LI Jing 1 SUN Caixuan 2 LI Ao 2 XUE Yilu 2 WANG Runlin 3 TANG Yuyun 2 CAO Yuanyuan 4

Affiliation: 1. Sanmiao Station, Guangnei Community Health Service Center, Xicheng District, Beijing 100053, China 2. National Key Laboratory of New Drug Target Discovery and Creation for Major Diseases, Ganzhou 431000, Jiangxi Province, China 3. Department of Cardiology, Renmin Hospital of Wuhan University,Wuhan 430060, China 4. Medical Science Research Center, Zhongnan Hospital of Wuhan University,Wuhan 430071, China

Keywords: Spontaneous abortion Fibroblast growth factor Fibroblast growth factor receptor Mendelian randomization

DOI: 10.12173/j.issn.1004-5511.202412053

Reference: Li J, Sun CX, Li A, Xue YL, Wang RL, Tang YY, Cao YY. Mendelian randomization study on the relationship between fibroblast growth factors and their receptors and the risk of spontaneous abortion[J]. Yixue Xinzhi Zazhi, 2025, 35(6): 680-687. DOI: 10.12173/j.issn.1004-5511.202412053. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the causal relationship between fibroblast growth factors (FGFs), their receptors (FGFRs) and spontaneous abortion (SA).

Methods  FGFs, FGFRs, and SA related GWAS data were obtained from the FinnGen Alliance and Genome-wide Association Studies Databases. Using MR analysis method to explore the causal relationship between FGFs, FGFRs and SA, with the inverse-variance weighted method (IVW) as the main analysis method. Sensitivity analysis was conducted using MR-PRESSO, MR Egger, Cochran's  Q, and the leave-one-out method.

Results A total of 22 exposure factors were selected. The IVW results showed that FGF22 increased the risk of SA [OR=1.099, 95%CI (1.001, 1.206), P=0.047], while FGF12 decreased the risk of SA [OR=0.858, 95%CI (0.774, 0.951), P=0.003]. There were no significant causal associations between other FGFs, FGFRs, and SA. Sensitivity analysis conducted on the causal association between FGF12, FGF22, and SA showed that Cochran's Q test (P>0.05) indicated no heterogeneity, MR Egger test (P>0.05) indicated no horizontal pleiotropy, MR-PRESSO method did not detect outliers and no SNPs that had a significant impact on the results were detected using leave-one-out method.

Conclusion FGF12 is a protective factor for SA, while FGF22 is a risk factor for SA. The result provide potential molecular markers for early prediction and targeted intervention of SA.

Full-text
Please download the PDF version to read the full text: download
References

1.Griebel CP, Halvorsen J, Golemon TB, et al. Management of spontaneous abortion[J]. Am Fam Physician, 2005, 72(7): 1243-1250. https://pubmed.ncbi.nlm.nih.gov/16225027/

2.Quenby S, Gallos ID, Dhillon-Smith RK, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss[J]. Lancet, 2021, 397(10285): 1658-1667. DOI: 10.1016/S0140-6736(21)00682-6.

3.Brier N. Understanding and managing the emotional reactions to a miscarriage[J]. Obstet Gynecol, 1999, 93(1): 151-155. DOI: 10.1016/s0029-7844(98)00294-4.

4.Yang Y, Wu J, Wang X, et al. Circulating fibroblast growth factor 21 as a potential biomarker for missed abortion in humans[J]. Fertility and Sterility, 2021, 116(4): 1040-1049. DOI: 10.1016/j.fertnstert.2021.05.098.

5.Vomstein K, Reiser E, Toth B. Vaginal ultrasound obsolete? Fibroblast growth factor 21 as a new diagnostic tool in missed abortion[J]. Fertil Steril, 2021, 116(4): 1050-1051.  DOI: 10.1016/j.fertnstert.2021.07.1207.

6.Filant J, DeMayo FJ, Pru JK, et al. Fibroblast growth factor receptor two (FGFR2) regulates uterine epithelial integrity and fertility in mice[J]. Biol Reprod, 2014, 90(1): 7. DOI: 10.1095/biolreprod.113.114496.

7.Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease[J]. Signal Transduct Target Ther, 2020, 5(1): 181. DOI: 10.1038/s41392-020-00222-7.

8.Fresco VM, Kern CB, Mohammadi M, et al. Fibulin-1 binds to fibroblast growth factor 8 with high affinity: effects on embryo survival[J]. J Biol Chem, 2016, 291(36): 18730-18739. DOI: 10.1074/jbc.M115.702761.

9.Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality[J]. Nat Rev Cardiol, 2017, 14(10): 577-590. DOI: 10.1038/nrcardio.2017.78.

10.Larsson SC, Michaëlsson K, Mola-Caminal M, et al. Genome-wide association and Mendelian randomization study of fibroblast growth factor 21 reveals causal associations with hyperlipidemia and possibly NASH[J]. Metabolism, 2022, 137: 155329. DOI: 10.1016/j.metabol.2022.155329.

11.Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomisation (STROBE-MR): explanation and elaboration[J]. BMJ, 2021, 375: n2233. DOI: 10.1136/bmj.n2233.

12.Martens EP, Pestman WR, de Boer A, et al. Instrumental variables: application and limitations[J]. Epidemiology, 2006, 17(3): 260-267. DOI: 10.1097/01.ede.0000215160.88317.cb.

13.Zhao JH, Stacey D, Eriksson N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9): 1540-1551. DOI: 10.1038/s41590-023-01588-w.

14.Gudjonsson A, Gudmundsdottir V, Axelsson GT, et al. A genome-wide association study of serum proteins reveals shared loci with common diseases[J]. Nat Commun, 2022, 13(1): 480. DOI: 10.1038/s41467-021-27850-z.

15.Chen H, Zhang Y, Li S, et al. The association between genetically predicted systemic inflammatory regulators and polycystic ovary syndrome: a Mendelian randomization study[J]. Front Endocrinol (Lausanne), 2021, 12: 731569. DOI: 10.3389/fendo.2021.731569.

16.Li J, Tang M, Gao X, et al. Mendelian randomization analyses explore the relationship between cathepsins and lung cancer[J]. Commun Biol, 2023, 6(1): 1019. DOI: 10.1038/s42003-023-05408-7.

17.Kim JY, Song M, Kim MS, et al. An atlas of associations between 14 micronutrients and 22 cancer outcomes: Mendelian randomization analyses[J]. BMC Med, 2023, 21(1): 316. DOI: 10.1186/s12916-023-03018-y.

18.Clarke L, Zheng-Bradley X, Smith R, et al. The 1000 genomes project: data management and community access[J]. Nat Methods, 2012, 9(5): 459-462. DOI: 10.1038/nmeth.1974.

19.Wan B, Lu L, Lv C. Mendelian randomization study on the causal relationship between leukocyte telomere length and prostate cancer[J]. PLoS One, 2023, 18(6): e0286219. DOI: 10.1371/journal.pone.0286219.

20.Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors[J]. Stat Methods Med Res, 2012, 21(3): 223-242. DOI: 10.1177/0962280210394459.

21.Terauchi A, Durlacher E, Pitino J, et al. Neuronal fibroblast growth factor 22 signaling during development, but not in adults, is involved in anhedonia[J]. Neuroreport, 2020, 31(2): 125-130. DOI: 10.1097/WNR.0000000000001399.

22.Wallace KL, Johnson V, Sopelak V, et al. Clomiphene citrate versus letrozole: molecular analysis of the endometrium in women with polycystic ovary syndrome[J]. Fertil Steril, 2011, 96(4): 1051-1056. DOI: 10.1016/j.fertnstert.2011.07.1092.

23.O'Brien K, Wang Y. The placenta: a maternofetal interface[J]. Annu Rev Nutr, 2023, 43: 301-325. DOI: 10.1146/annurev-nutr-061121-085246.

24.Kharamani A, Mashayekhi F, Salehi Z. Association of fibroblast growth factor-1 promoter polymorphism and its serum concentrations with repeated implantation failure after in vitro fertilisation: a cross-sectional study[J]. J Hum Reprod Sci, 2024, 17(2): 121-127. DOI: 10.4103/jhrs.jhrs_68_24.

25.Dubin C, Glickman JW, Del Duca E, et al. Scalp and serum profiling of frontal fibrosing alopecia reveals scalp immune and fibrosis dysregulation with no systemic involvement[J]. J Am Acad Dermatol, 2022, 86(3): 551-562. DOI: 10.1016/j.jaad.2021.05.016.

26.Song SH, Kim K, Jo EK, et al. Fibroblast growth factor 12 is a novel regulator of vascular smooth muscle cell plasticity and fate[J]. Arterioscler Thromb Vasc Biol, 2016, 36(9): 1928-1936. DOI: 10.1161/ATVBAHA.116.308017.

27.Woo J, Suh W, Sung JH. Hair growth regulation by fibroblast growth factor 12 (FGF12)[J]. Int J Mol Sci, 2022, 23(16): 9467. DOI: 10.3390/ijms23169467.

28.Hernandez-Vargas H, Castelino J, Silver MJ, et al. Exposure to aflatoxin B1 in utero is associated with DNA methylation in white blood cells of infants in the Gambia[J]. Int J Epidemiol, 2015, 44(4): 1238-1248. DOI: 10.1093/ije/dyv027.

29.Huang Z, Xu A, Cheung BMY. The potential role of fibroblast growth factor 21 in lipid metabolism and hypertension[J]. Curr Hypertens Rep, 2017, 19(4): 28. DOI: 10.1007/s11906-017-0730-5.

30.Dekker Nitert M, Barrett HL, Kubala MH, et al. Increased placental expression of fibroblast growth factor 21 in gestational diabetes mellitus[J]. J Clin Endocrinol Metab, 2014, 99(4): E591-598. DOI: 10.1210/jc.2013-2581.

31.Long Y, Tang L, Zhou Y, et al. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study[J]. BMC Med, 2023, 21(1): 66. DOI: 10.1186/s12916-023-02761-6.

32.Zhang Y, Li D, Zhu Z, et al. Evaluating the impact of metformin targets on the risk of osteoarthritis: a Mendelian randomization study[J]. Osteoarthritis Cartilage, 2022, 30(11): 1506-1514. DOI: 10.1016/j.joca.2022.06.010.

33.Ellingjord-Dale M, Papadimitriou N, Katsoulis M, et al. Coffee consumption and risk of breast cancer: a Mendelian randomization study[J]. PLoS One, 2021, 16(1): e0236904. DOI: 10.1371/journal.pone.0236904.