欢迎访问中南医学期刊社系列期刊网站!

炎症性肠病与肠道微生态

发表时间:2022年08月25日阅读量:3724次下载量:1024次下载手机版

作者: 胡彤 1, 2 庞智 1, 2, 3

作者单位: 1. 南京医科大学附属苏州医院北区消化内科(江苏苏州 215008) 2. 苏州市立医院北区消化内科(江苏苏州 215008) 3. 苏州市消化系疾病与营养研究中心(江苏苏州 215008)

关键词: 炎症性肠病 肠道微生态 肠道屏障 诊断 治疗

DOI: 10.12173/j.issn.1004-5511.202203027

基金项目: 基金项目: 江苏省自然科学基金项目(BK20161232)

引用格式:胡彤, 庞智. 炎症性肠病与肠道微生态[J]. 医学新知, 2022, 32(4): 296-302. DOI: 10.12173/j.issn.1004-5511.202203027.

Hu T, Pang Z. Inflammatory bowel disease and intestinal microecology[J]. Yixue Xinzhi Zazhi, 2022, 32(4): 296-302. DOI: 10.12173/j.issn.1004-5511.202203027.[Article in Chinese]

摘要|Abstract

炎症性肠病作为一种慢性、非特异性的肠道炎症性疾病, 其发病机制尚不明确,普遍认为与环境改变、肠道微生态变化、遗传易感性、免疫调节失衡等因素相互作用有关。肠道微生态在营养吸收、物质代谢、免疫保障等生理过程中起着至关重要的作用,本文就肠道微生态在炎症性肠病中的作用及诊疗价值进行介绍。

全文|Full-text

炎症性肠病(inflammatory bowel disease,IBD)是一种病因尚不明确的慢性非特异性肠道炎症性疾病,主要包括克罗恩病(Crohn's disease,CD)和溃疡性结肠炎(ulcerative colitis,UC)两个亚型。目前研究认为IBD的发生发展是环境、微生态和免疫介导因子在遗传易感宿主中相互作用的结果。鉴于IBD患者肠道微生态发生了改变,且参与了IBD的发病,本研究就肠道微生态在IBD中生理作用及诊疗价值进行介绍。

1 炎症性肠病与肠道微生态

人体肠道微生态主要由超过100万亿个不同的微生物组成,包括细菌、真菌、病毒和寄生虫等。肠道微生物所包含的基因是宿主基因组的100多倍[1]。肠道细菌群主要分为厚壁菌门、拟杆菌门、变形菌门和放线菌门,健康成人以厚壁菌门和拟杆菌门为主[2]。整个胃肠道的细菌数量也存在差异,结肠菌种的数量和多样性均高于胃和小肠[3]。

IBD患者肠道微生态变化主要表现为菌群失调,包括菌群多样性,以及种类和丰度发生改变。与健康人群相比,IBD患者肠道菌群中占主导的厚壁菌门和拟杆菌门的丰度减少,而变形菌门和放线菌门的占比相应增加[4-5]。基于16s测序技术,Gevers等对未接受治疗的CD患者的研究显示,消除药物对微生态的混淆效应后,CD患者肠黏膜中巴氏杆菌、韦荣球菌、奈瑟菌和梭杆菌的数量增加,拟杆菌、粪杆菌、瘤胃球菌和粪肠球菌的丰度减少[6]。CD与UC患者的肠道微生物组成也存在差异,与UC患者相比,CD患者肠道微生物中有益的粪杆菌、甲烷短杆菌和颤螺旋菌丰度减少[7]。此外,本团队前期研究发现IBD患者肠道微生态中真菌的菌群结构也发生了改变[8]。

IBD患者肠道微生态的改变可能与疾病活动度、治疗方式等有关。Halfvarson等对128名受试者进行了2年的随访,研究发现,IBD患者的微生物构成较健康对照组随时间的波动更大,其中回肠CD患者与健康对照组的偏差最大,微生物群的波动与因病加强用药存在一定相关性[7]。此外,Yilmaz等研究显示,与未经手术治疗的CD患者相比,小肠切除术后的CD患者肠道微生物中副拟杆菌和梭状芽胞杆菌减少、肠杆菌增加,进一步研究显示毛螺菌和瘤胃球菌的紊乱与CD患者抗肿瘤坏死因子-α(抗TNF-α)治疗的不良反应和术后疾病复发有关[9]。

2 肠道微生态在炎症性肠病发病中的作用

肠道微生态参与IBD的许多生理过程,包括消化与代谢功能、上皮屏障的调节、宿主免疫系统的发育和调节等。

2.1 消化与代谢

肠道微生态参与了消化与代谢的过程,产生多种氨基酸、维生素,并进行胆汁的转化[10]。短链脂肪酸(short-chain fatty acids,SCFAs)是由人类无法自然消化的膳食植物纤维发酵产生,主要包括乙酸、丙酸、丁酸,是结肠上皮的能量来源,其在调节肠道免疫稳态中发挥关键作用[11-12]。SCFAs可能通过G蛋白偶联受体(G protein-coupled receptors,GPCRs)激活细胞产生趋化因子和细胞因子,调节保护性免疫和组织炎症[13]。Lloyd-Price等研究分析了132名IBD患者的黏膜、血液和粪便样本,发现兼性厌氧菌增加、专性厌氧菌减少,其代谢物SCFAs水平降低,促进了肠道炎症进展[14]。琥珀酸是三羧酸循环中间体,是重要的促炎因子,是巨噬细胞对脂多糖反应的关键介质[15]。Laserna-Mendieta等研究显示,与健康对照组相比,IBD患者肠道组织及粪便中琥珀酸水平相对增加,从肠道微生态的角度来看,利用琥珀酸的考拉杆菌在UC和CD患者中的含量均低于健康个体[16]。此外,胆汁酸是脂肪吸收和消化所需的乳化剂,胆汁酸的缺乏可能促进炎症反应,并导致潜在有害细菌的繁殖[10]。多项研究发现UC和CD患者厚壁菌门及瘤胃球菌减少,进而出现胆汁酸吸收不良和继发性胆汁酸缺乏,最终导致持续腹泻症状[17-18]。

2.2 肠道屏障

肠道微生态与宿主之间形成肠道黏膜屏障,表现为肠上皮内的黏液双分子层和细胞连接,形成包含微生物群的物理屏障。此外,抗菌肽的分泌,如潘氏细胞、杯状细胞等产生的防御素,形成了抗微生物入侵的化学屏障[19-20]。核苷酸结合寡聚域2(nucleotide oligomerization domain 2,NOD2)作为细胞内细菌防御因子在肠上皮细胞中表达,有助于对共生微生物的免疫应答。NOD2突变可能导致黏液层出现缺陷、屏障破坏及抗菌肽的减少进而使致病菌扩张[21]。肠道细菌产生的SCFAs,特别是丁酸,可诱导调节性T细胞(regulatory T cell,Treg)的发育,促进杯状细胞产生黏液,从而加强黏膜屏障[22],而目前研究表明,IBD患者肠道微生态中产生丁酸的细菌,如普拉梭菌、 瘤胃球菌、罗氏菌和梭状芽胞杆菌的数量减少[23]。链球菌芽孢产生的吲哚代谢产物,如吲哚丙烯酸(indoleacrylic acid,IA)可增强肠上皮屏障功能,减轻炎症反应,而IBD患者肠道中IA的生物合成减少,可能导致屏障功能障碍[24]。由此可见,肠道微生态在肠黏膜屏障中扮演了重要的角色。

2.3 宿主免疫

肠道微生态在宿主免疫系统的成熟中起着重要作用。T细胞参与炎症和局部免疫反应,其中Treg是炎症的负性调节因子,而肠道中脆弱类杆菌和梭状芽胞杆菌可刺激Treg的分化[25]。动物模型显示,无菌环境可预防基因易感小鼠结肠炎的发生,而无菌小鼠经IBD患者粪便微生物定植后,肠道Th17细胞数量增加、Treg数量减少,为探索人类肠道微生态的发病机制提供了参考[26]。特异性大肠杆菌,如黏附性侵袭性大肠杆菌(adhesive-invasive escherichia coli,AIEC)在巨噬细胞中具有复制能力,可逃避免疫细胞的杀伤,引发炎症级联反应[27],除直接影响自噬机制外,还可抑制自噬过程,使其在细胞内存活和生长。AIEC在巨噬细胞内的持续复制导致高水平的TNF-α分泌,但不诱导细胞死亡,促使肠道炎症进展和AIEC过度定植[28]。上述研究表明,肠道微生态是免疫系统的关键组成部分,其变化与IBD的发病相关。

3 肠道微生态在炎症性肠病诊疗中的应用

3.1 诊断

随着基因组学的快速发展,许多研究发现,某些特定细菌群落的多样性和丰度变化可用于IBD的诊断。Lopez-Siles等研究显示,IBD患者普拉梭菌丰度显著低于健康对照组,普拉梭菌与大肠杆菌结合分析可鉴别结肠CD和回结肠CD[29]。Vatn等研究也发现,与非CD患者相比,CD患者粪便样本中普拉梭菌、消化链球菌科、粪厌氧棒杆菌、甲烷短杆菌、克里斯滕森菌、埃希氏杆菌的丰度增加,可用于鉴别CD患者[30]。此外,普拉梭菌、布劳特氏菌、粪球菌、庞大真杆菌和大肠杆菌也被认为可能是诊断IBD的生物标志物[31]。

肠道微生态对IBD患者疾病活动的评估也具有一定的价值。本团队既往研究发现,CD患者具核梭杆菌检出率和丰度显著升高,可能与肠道炎症活动有关[32]。He等研究显示,与健康对照组相比,UC患者粪便样本微生物群多样性较低,尤其在活动期[33]。活动期UC患者变形菌门的丰度显著高于缓解期患者,而厚壁菌门的丰度则相反。克雷伯菌、肠球菌和嗜血杆菌在活动期UC患者中较高,而罗氏菌、布鲁氏菌和粪杆菌在缓解期UC患者中较高。另有研究通过分析轻、中、重度活动IBD患者的粪便微生物群,发现放线菌门和变形菌门相对增加而厚壁菌门减少,且与IBD的严重程度密切相关[34]。

3.2 治疗

3.2.1 饮食

饮食的改变可能导致肠道微生态多样性减少及功能受损,同时还与IBD的发生风险有关。以大量红肉等为基础的西式饮食会导致嗜胆菌属和拟杆菌等耐胆汁细菌增加,而厚壁菌门数量减少,增加IBD的发病风险,而植物性饮食可使厚壁菌门的数量增加[35]。一项纳入52例IBD患者的研究发现,低可发酵低聚糖、双糖、单糖和多元醇饮食的患者普拉梭菌的丰度显著低于对照组,肠道症状缓解率高于对照组[36]。Laura等分析了173种饮食因素与1 425名受试者肠道微生态的关系,发现快餐、加工肉类、软饮料和焦糖与梭状芽胞杆菌、瘤胃球菌和厚壁菌门的丰度呈正相关,其可能通过产生内毒素和诱导Th17细胞,导致肠道通透性改变和肠道炎症发生,并提出长期进食豆类、蔬菜、水果和坚果,增加植物性食物、低脂发酵乳制品和鱼类的摄入,减少烈性酒、加工过的高脂肪肉类和软饮料的摄入,有可能通过改变肠道微生态从而阻止肠道炎症的发生[37]。然而,也有研究指出,减少红肉和加工肉类的摄入并未降低CD的发病率[38]。由于混杂因素和患者依从性的影响, 饮食在IBD治疗中的作用尚需大样本、多中心的随机对照试验加以验证。

3.2.2 益生菌

益生菌可有效调节肠道菌群失衡,改善微生态环境,增强肠道黏膜屏障功能,调节局部和全身免疫反应,为IBD等疾病的治疗提供新的选择[39]。双歧杆菌、乳酸杆菌、VSL#3益生菌等已被广泛应用于临床治疗。与安慰剂相比,益生菌(短双歧杆菌、双歧杆菌和嗜酸乳杆菌)治疗患者在临床缓解指数和组织学评分方面的变化均提示疾病显著改善[40]。益生菌鸡尾酒疗法在治疗IBD上有着巨大的潜力,8种益生菌的混合物VSL#3可通过抑制HMGB1的释放,阻断HMGB1介导的肠道屏障功能障碍,改善结肠炎小鼠模型的肠道炎症和粪便微生态失衡[41]。一项Meta分析指出益生菌可诱导及维持IBD缓解,降低UC疾病活动指数,补充益生菌可增加IBD患者肠道内有益菌群(尤其是双歧杆菌)的数量,使用1010~1012 cfu/d的益生菌剂量可能是缓解IBD的参考范围[42]。

3.2.3 粪菌移植

粪菌移植(fecal microbiota transplantation,FMT)是一种基于肠道微生态调节的治疗方式,通过将健康人群粪便中的功能性细菌移植到患者的胃肠道中来重建肠道菌群,是目前公认的难辨梭状芽胞杆菌感染的治疗手段,为IBD的治疗带来了新的思路[43]。FMT可增加SCFAs的产生,有助于维持肠上皮屏障完整性,降低肠道通透性和疾病严重程度[44]。FMT还可通过抑制Th1分化、T细胞活性、白细胞黏附和炎症因子的产生以恢复免疫失调[45]。Tan等研究发现FMT组患者治疗8周后在总体临床或内镜缓解率方面均显著高于安慰剂组(37% vs. 18%,P<0.05)[46]。Sood等对129例接受FMT治疗的活动期UC患者随访22周,其中101例患者可耐受FMT规律治疗[47]。此外,腹部不适、腹胀和低热是FMT术后最常见的短期不良事件,长期不良事件包括荨麻疹、关节炎、关节痛、抑郁、部分感音神经性听力损失和过敏性支气管炎。但FMT治疗尚无供体选择、治疗流程等标准。

3.2.4 生物制剂

肠道微生态的改变可能预测生物制剂临床治疗IBD的效果。一项抗TNF治疗CD患者的研究发现,失应答患者肠黏膜中瘤胃球菌增加,而应答组患者霍氏真杆菌、挑剔真杆菌、埃希氏菌的数量增加,且产丁酸菌丰度较失应答组提高[48]。David等也提出结合史密斯侧盘菌、嗜粘蛋白阿克曼菌、普拉梭菌的相对丰度可预测活动性IBD患者对抗TNF-α治疗的反应[49]。另一项维得利珠单抗治疗IBD的前瞻性研究中,有应答的CD患者肠道菌群α多样性显著升高,治疗前粪便中罗氏菌、伯克霍尔德菌增多的CD患者疗效更好,在获得缓解患者的基线样本中,包括支链氨基酸合成在内的13条通路显著富集[50]。此外,普拉梭菌基线水平升高可预测IBD患者对英夫利昔单抗和乌司奴单抗治疗的应答,而对抗TNF药物和乌司奴单抗治疗应答的患者在治疗后普拉梭菌增加[51]。因此,微生态的变化可以作为对生物制剂疗效反应的标志。

4 结语

随着我国IBD发病率的逐渐升高,肠道微生态在IBD诊疗中的价值受到越来越多的关注。目前人们对肠道微生态在IBD领域的研究尚处于初始阶段,临床应用尚需进一步的探索。

参考文献|References

1.Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018, 11(1): 1-10. DOI: 10.1007/s12328-017-0813-5.

2.Shan Y, Lee M, Chang EB. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73: 455-468. DOI: 10.1146/annurev-med-042320-021020.

3.Guo X, Huang C, Xu J, et al. Gut microbiota is a potential biomarker in inflammatory bowel disease[J]. Front Nutr, 2022, 8: 818902. DOI: 10.3389/fnut.2021.818902.

4.Yan JB, Luo MM, Chen ZY, et al. The function and role of the Th17/Treg cell balance in inflammatory bowel disease[J]. J Immunol Res, 2020, 2020: 8813558. DOI: 10.1155/2020/8813558.

5.Chen L, Wang J. Gut microbiota and inflammatory bowel disease[J]. WIREs Mech Dis, 2022, 14(2): e1540. DOI: 10.1002/wsbm.1540. 

6.Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn's dis-ease[J]. Cell Host Microbe, 2014, 15(3): 382-392. DOI: 10.1016/j. chom.2014.02.005.

7.Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease[J]. Nat Microbiol, 2017, 2: 17004. DOI: 10.1038/nmicrobiol.2017.4.

8.尹娟, 胡彤, 徐丽娟, 等. 苏州地区初发克罗恩病患者粪便真菌菌群结构研究[J]. 胃肠病学, 2020, 25(3): 129-135. [Yin J, Hu T, Xu LJ, et al. Fecal fungal community structure of newly diagnosed patients with Crohn's disease in Suzhou, Jiangsu Province[J]. Chinese Journal of Gastroenterology, 2020, 25(3): 129-135.] DOI: 10.3969/j.issn.1008-7125.2020.03.001.

9.Yilmaz B, Juillerat P, Oyas O, et al. Microbial network disturbances in relapsing refractory Crohn's dis-ease[J]. Nat Med, 2019, 25(2): 323-336. DOI: 10.1038/s41591-018-0308-z.

10.Nathan NN, Philpott DJ, Girardin SE. The intestinal microbiota: from health to disease, and back[J]. Microbes Infect, 2021, 23(6-7): 104849. DOI: 10.1016/j.micinf. 2021.104849.

11.Zhou F, Jiang H, Kong N, et al. Electroacupuncture attenuated anxiety and depression-like behavior via inhibition of hippocampal inflammatory response and metabolic disorders in TNBS-induced IBD rats[J]. Oxid Med Cell Longev, 2022, 2022: 8295580. DOI: 10.1155/202 2/8295580.

12.Deleu S, Machiels K, Raes J, et al. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD?[J]. EBioMedicine, 2021, 66: 103293. DOI: 10.1016/j.ebiom.2021.103293.

13.Parada VD, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithe-lial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. DOI: 10.3389/fimmu.2019.00277.

14.Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in in-flammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662. DOI: 10.1038/s41586-019-1237-9.

15.Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mito-chondria to drive inflammatory macrophages[J]. Cell, 2016, 167(2): 457-470.e13. DOI: 10.1016/j.cell.2016.08.064.

16.Laserna-Mendieta EJ, Clooney AG, Carretero-Gomez JF, et al. Determinants of reduced genetic capac-ity for butyrate synthesis by the gut microbiome in Crohn's disease and ulcerative colitis[J]. J Crohns Colitis, 2018, 12(2): 204-216. DOI: 10.1093/ecco-jcc/jjx137.

17.Sinha SR, Haileselassie Y, Nguyen LP, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670.e5. DOI: 10.1016/j.chom.2020.01.021.

18.Thomas JP, Modos D, Rushbrook SM, et al. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease[J]. Front Immunol, 2022, 13: 829525. DOI: 10.3389/fimmu.2022.829525.

19.Liu L, Liang L, Yang C, et al. Extracellular vesicles of Fusobacterium nucleatum compromise intestinal barrier through targeting RIPK1-mediated cell death pathway[J]. Gut Microbes, 2021, 13(1): 1-20. DOI: 10.1080/19490976.2021.1902718.

20.Yao D, Dai W, Dong M, et al. MUC2 and related bacterial factors: therapeutic targets for ulcerative colitis[J]. EBioMedicine, 2021, 74: 103751. DOI: 10.1016/j.ebiom. 2021.103751.

21.Topal Y, Gyrd-Hansen M. RIPK2 NODs to XIAP and IBD[J]. Semin Cell Dev Biol, 2021, 109: 144-150. DOI: 10.1016/j.semcdb.2020.07.001.

22.Paik D, Yao L, Zhang Y, et al. Human gut bacteria produce TH17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912. DOI: 10.1038/s41586-022-04480-z.

23.Naschla G, Marcela AH, Martín G. Butyrate and the fine-tuning of colonic homeostasis: implication for inflammatory bowel diseases[J]. Int J Mol Sci, 2021, 22(6): 3061. DOI: 10.3390/ijms22063061.

24.Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37.e6. DOI: 10.1016/j.chom.2017.06.007.

25.Wu X, Pan S, Luo W, et al. Roseburia intestinalisderived flagellin ameliorates colitis by targeting miR-223-3p-mediated activation of NLRP3 inflammasome and pyroptosis[J]. Mol Med Rep, 2020, 22(4): 2695-2704. DOI: 10.3892/mmr. 2020.11351.

26.Britton GJ, Contijoch EJ, Mogno I, et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice[J]. Immuni-ty, 2019, 50(1): 212-224.e4. DOI: 10.1016/j.immuni.2018.12.015.

27.Perna A, Hay E, Contieri M, et al. Adherent-invasive Escherichia coli (AIEC): cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? [J]. J Cell Physiol, 2020, 235(6): 5041-5049. DOI: 10.1002/jcp.29430.

28.Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity[J]. World J Gastrointest Pathophysiol, 2014, 5(3): 213-227. DOI: 10.4291/wjgp.v5.i3.213.

29.Lopez-Siles M, Martinez-Medina M, Busquets D, et al. Mucosa-associated faecalibacterium prausnitzii and escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes[J]. Int J Med Microbiol, 2014, 304(3-4): 464-475. DOI: 10.1016/j.ijmm.2014.02.009.

30.Vatn S, Carstens A, Kristoffersen AB, et al. Faecal microbiota signatures of IBD and their relation to diagnosis, disease phenotype, inflammation, treatment escalation and anti-TNF response in a Euro-pean Multicentre Study (IBD-Character)[J]. Scand J Gastroenterol, 2020, 55(10): 1146-1156. DOI: 10.1080/00365521.2020.1803396.

31.Chamorro N, Montero DA, Gallardo P, et al. Landscapes and bacterial signatures of muco-sa-associated intestinal microbiota in Chilean and Spanish patients with inflammatory bowel dis-ease[J]. Microb Cell, 2021, 8(9): 223-238. DOI: 10.15698/mic2021.09.760.

32.邢晔陈, 胡彤, 徐丽娟, 等. 克罗恩病患者粪便具核梭杆菌与钙卫蛋白相关性研究[J]. 胃肠病学, 2020, 25(6): 326-331. [Xing YC, Hu T, Xu LJ, et al. Correlation of fecal fusobacterium nucleatum with fecal calpro-tectin in patients with Crohn's disease[J]. Chinese Journal of Gastroenterology, 2020, 25(6): 326-331.] DOI: 10.3969/j.issn.1008-7125.2020.06.002.

33.He XX, Li YH, Yan PG, et al. Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis[J]. World J Gastroenterol, 2021, 27(28): 4722-4737. DOI: 10.3748/wjg.v27.i28.4722.

34.Zhou Y, Xu ZZ, He Y, et al. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction[J]. mSystems, 2018, 3(1): e00188-17. DOI: 10.1128/mSystems.00188-17.

35.Li T, Qiu Y, Yang HS, et al. Systematic review and meta-analysis: association of a pre-illness Western dietary pattern with the risk of developing inflammatory bowel disease[J]. J Dig Dis, 2020, 21(7): 362-371. DOI: 10.1111/1751-2980.12910.

36.Cox SR, Lindsay JO, Fromentin S, et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial[J]. Gastroenterology, 2020, 158(1): 176-188.e7. DOI: 10.1053/j.gastro.2019.09.024.

37.Laura AB, Arnau VVi, Floris I, et al. Long-term dietary patterns are associated with pro-inflammatory and anti- inflammatory features of the gut microbiome[J]. Gut, 2021, 70(7): 1287-1298. DOI: 10.1136/gutjnl-2020-322670.

38.Albenberg L, Brensinger, CM, Wu Q, et al. A diet low in red and processed meat does not reduce rate of Crohn's disease flares[J]. Gastroenterology, 2019, 157(1): 128-136.e5. DOI: 10.1053/j.gastro.2019.03.015.

39.Saul S, Fuessel J, Runde J. Pediatric digestive health and the gut microbiome: existing therapies and a look to the future[J]. Pediatr Ann, 2021, 50(8): e336-e342. DOI: 10.3928/19382359-20210720-01.

40.Mishra J, Stubbs M, Kuang L, et al. Inflammatory bowel disease therapeutics: a focus on probiotic engineering[J]. Mediators Inflamm, 2022, 2022: 9621668. DOI: 10.1155/ 2022/9621668.

41.Chen X, Fu Y, Wang L, et al. Bifidobacterium longum and VSL#3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment[J]. Dev Comp Immunol. 2019, 92: 77-86. DOI: 10.1016/j.dci. 2018.09.006.

42.Zhang XF, Guan XX, Tang YJ, et al. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: a systematic review and meta analysis[J]. Eur J Nutr, 2021, 60(5): 2855-2875. DOI: 10.1007/s00394-021-02503-5.

43.Niu W, Yang F, Fu Z, et al. The role of enteric dysbacteriosis and modulation of gut microbiota in the treatment of inflammatory bowel disease[J]. Microb Pathog, 2022, 165: 105381. DOI: 10.1016/j.micpath.2021.105381.

44.Bekkers M, Stojkovic B, Kaiko GE. Mining the microbiome and microbiota-derived molecules in in-flammatory bowel disease[J]. Int J Mol Sci, 2021, 22(20): 11243. DOI: 10.3390/ijms222011243.

45.Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remis-sion in patients with ulcerative colitis: a randomized clinical trial[J]. JAMA, 2019, 321(2): 156-164. DOI: 10.1001/jama.2018.20046.

46.Tan P, Li X, Shen J, et al. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update[J]. Front Pharmacol, 2020, 11: 574533. DOI: 10.3389/fphar.2020.574533.

47.Sood A, Singh A, Mahajan R, et al. Acceptability, tolerability, and safety of fecal microbiota transplantation in pa-tients with active ulcerative colitis (AT&S Study)[J]. J Gastroenterol Hepatol, 2020, 35(3): 418-424. DOI: 10.1111/jgh.14829.

48.Dovrolis N, Michalopoulos G, Theodoropoulos GE, et al. The interplay between mucosal microbiota composition and host gene-expression is linked with infliximab response in inflammatory bowel dis-eases[J]. Microorganisms, 2020, 8(3): 438. DOI: 10.3390/microorganisms8030438.

49.Busquets D, Oliver L, Amoedo J, et al. RAID prediction: pilot study of fecal microbial signature with capacity to predict response to anti-TNF treatment[J]. Inflamm Bowel Dis, 2021, 27(Suppl 2): S63-S66. DOI: 10.1093/ibd/izab273.

50.Ananthakrishnan AN, Luo C, Yajnik V, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases[J]. Cell Host Microbe, 2017, 21(5): 603-610.e3. DOI: 10.1016/j. chom.2017.04.010.

51.Radhakrishnan ST, Alexander JL, Mullish BH, et al. Systematic review: the association between the gut microbiota and medical therapies in inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2022, 55(1): 26-48. DOI: 10.1111/apt.16656.

《医学新知》由国家新闻出版总署批准,中国农工民主党湖北省委主管,武汉大学中南医院和中国农工民主党湖北省委医药卫生工作委员会主办的综合性医学学术期刊,国内外公开发行。

官方公众号

扫一扫,关注我们