Inflammatory bowel disease (IBD) is a group of chronic, nonspecific inflammatory disease of the bowel the pathogenesis of which has not yet been clarified, but is generally believed to be related to the interaction of environmental changes, intestinal microecological changes, genetic susceptibility, immune regulation imbalance and other factors. Intestinal microbiota play an important role in physio-logical processes such as nutrient absorption, metabolism and immune response. This article introduces the functions of intestinal microbiota and its significance in the diagnosis and treatment of IBD.
HomeArticlesVol 32,2022 No.4Detail
Inflammatory bowel disease and intestinal microecology
Published on Aug. 25, 2022Total Views: 5009 timesTotal Downloads: 1363 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018, 11(1): 1-10. DOI: 10.1007/s12328-017-0813-5.
2.Shan Y, Lee M, Chang EB. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73: 455-468. DOI: 10.1146/annurev-med-042320-021020.
3.Guo X, Huang C, Xu J, et al. Gut microbiota is a potential biomarker in inflammatory bowel disease[J]. Front Nutr, 2022, 8: 818902. DOI: 10.3389/fnut.2021.818902.
4.Yan JB, Luo MM, Chen ZY, et al. The function and role of the Th17/Treg cell balance in inflammatory bowel disease[J]. J Immunol Res, 2020, 2020: 8813558. DOI: 10.1155/2020/8813558.
5.Chen L, Wang J. Gut microbiota and inflammatory bowel disease[J]. WIREs Mech Dis, 2022, 14(2): e1540. DOI: 10.1002/wsbm.1540.
6.Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn's dis-ease[J]. Cell Host Microbe, 2014, 15(3): 382-392. DOI: 10.1016/j. chom.2014.02.005.
7.Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease[J]. Nat Microbiol, 2017, 2: 17004. DOI: 10.1038/nmicrobiol.2017.4.
8.尹娟, 胡彤, 徐丽娟, 等. 苏州地区初发克罗恩病患者粪便真菌菌群结构研究[J]. 胃肠病学, 2020, 25(3): 129-135. [Yin J, Hu T, Xu LJ, et al. Fecal fungal community structure of newly diagnosed patients with Crohn's disease in Suzhou, Jiangsu Province[J]. Chinese Journal of Gastroenterology, 2020, 25(3): 129-135.] DOI: 10.3969/j.issn.1008-7125.2020.03.001.
9.Yilmaz B, Juillerat P, Oyas O, et al. Microbial network disturbances in relapsing refractory Crohn's dis-ease[J]. Nat Med, 2019, 25(2): 323-336. DOI: 10.1038/s41591-018-0308-z.
10.Nathan NN, Philpott DJ, Girardin SE. The intestinal microbiota: from health to disease, and back[J]. Microbes Infect, 2021, 23(6-7): 104849. DOI: 10.1016/j.micinf. 2021.104849.
11.Zhou F, Jiang H, Kong N, et al. Electroacupuncture attenuated anxiety and depression-like behavior via inhibition of hippocampal inflammatory response and metabolic disorders in TNBS-induced IBD rats[J]. Oxid Med Cell Longev, 2022, 2022: 8295580. DOI: 10.1155/202 2/8295580.
12.Deleu S, Machiels K, Raes J, et al. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD?[J]. EBioMedicine, 2021, 66: 103293. DOI: 10.1016/j.ebiom.2021.103293.
13.Parada VD, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithe-lial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277. DOI: 10.3389/fimmu.2019.00277.
14.Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in in-flammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662. DOI: 10.1038/s41586-019-1237-9.
15.Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mito-chondria to drive inflammatory macrophages[J]. Cell, 2016, 167(2): 457-470.e13. DOI: 10.1016/j.cell.2016.08.064.
16.Laserna-Mendieta EJ, Clooney AG, Carretero-Gomez JF, et al. Determinants of reduced genetic capac-ity for butyrate synthesis by the gut microbiome in Crohn's disease and ulcerative colitis[J]. J Crohns Colitis, 2018, 12(2): 204-216. DOI: 10.1093/ecco-jcc/jjx137.
17.Sinha SR, Haileselassie Y, Nguyen LP, et al. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27(4): 659-670.e5. DOI: 10.1016/j.chom.2020.01.021.
18.Thomas JP, Modos D, Rushbrook SM, et al. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease[J]. Front Immunol, 2022, 13: 829525. DOI: 10.3389/fimmu.2022.829525.
19.Liu L, Liang L, Yang C, et al. Extracellular vesicles of Fusobacterium nucleatum compromise intestinal barrier through targeting RIPK1-mediated cell death pathway[J]. Gut Microbes, 2021, 13(1): 1-20. DOI: 10.1080/19490976.2021.1902718.
20.Yao D, Dai W, Dong M, et al. MUC2 and related bacterial factors: therapeutic targets for ulcerative colitis[J]. EBioMedicine, 2021, 74: 103751. DOI: 10.1016/j.ebiom. 2021.103751.
21.Topal Y, Gyrd-Hansen M. RIPK2 NODs to XIAP and IBD[J]. Semin Cell Dev Biol, 2021, 109: 144-150. DOI: 10.1016/j.semcdb.2020.07.001.
22.Paik D, Yao L, Zhang Y, et al. Human gut bacteria produce TH17-modulating bile acid metabolites[J]. Nature, 2022, 603(7903): 907-912. DOI: 10.1038/s41586-022-04480-z.
23.Naschla G, Marcela AH, Martín G. Butyrate and the fine-tuning of colonic homeostasis: implication for inflammatory bowel diseases[J]. Int J Mol Sci, 2021, 22(6): 3061. DOI: 10.3390/ijms22063061.
24.Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37.e6. DOI: 10.1016/j.chom.2017.06.007.
25.Wu X, Pan S, Luo W, et al. Roseburia intestinalisderived flagellin ameliorates colitis by targeting miR-223-3p-mediated activation of NLRP3 inflammasome and pyroptosis[J]. Mol Med Rep, 2020, 22(4): 2695-2704. DOI: 10.3892/mmr. 2020.11351.
26.Britton GJ, Contijoch EJ, Mogno I, et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice[J]. Immuni-ty, 2019, 50(1): 212-224.e4. DOI: 10.1016/j.immuni.2018.12.015.
27.Perna A, Hay E, Contieri M, et al. Adherent-invasive Escherichia coli (AIEC): cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? [J]. J Cell Physiol, 2020, 235(6): 5041-5049. DOI: 10.1002/jcp.29430.
28.Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity[J]. World J Gastrointest Pathophysiol, 2014, 5(3): 213-227. DOI: 10.4291/wjgp.v5.i3.213.
29.Lopez-Siles M, Martinez-Medina M, Busquets D, et al. Mucosa-associated faecalibacterium prausnitzii and escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes[J]. Int J Med Microbiol, 2014, 304(3-4): 464-475. DOI: 10.1016/j.ijmm.2014.02.009.
30.Vatn S, Carstens A, Kristoffersen AB, et al. Faecal microbiota signatures of IBD and their relation to diagnosis, disease phenotype, inflammation, treatment escalation and anti-TNF response in a Euro-pean Multicentre Study (IBD-Character)[J]. Scand J Gastroenterol, 2020, 55(10): 1146-1156. DOI: 10.1080/00365521.2020.1803396.
31.Chamorro N, Montero DA, Gallardo P, et al. Landscapes and bacterial signatures of muco-sa-associated intestinal microbiota in Chilean and Spanish patients with inflammatory bowel dis-ease[J]. Microb Cell, 2021, 8(9): 223-238. DOI: 10.15698/mic2021.09.760.
32.邢晔陈, 胡彤, 徐丽娟, 等. 克罗恩病患者粪便具核梭杆菌与钙卫蛋白相关性研究[J]. 胃肠病学, 2020, 25(6): 326-331. [Xing YC, Hu T, Xu LJ, et al. Correlation of fecal fusobacterium nucleatum with fecal calpro-tectin in patients with Crohn's disease[J]. Chinese Journal of Gastroenterology, 2020, 25(6): 326-331.] DOI: 10.3969/j.issn.1008-7125.2020.06.002.
33.He XX, Li YH, Yan PG, et al. Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis[J]. World J Gastroenterol, 2021, 27(28): 4722-4737. DOI: 10.3748/wjg.v27.i28.4722.
34.Zhou Y, Xu ZZ, He Y, et al. Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction[J]. mSystems, 2018, 3(1): e00188-17. DOI: 10.1128/mSystems.00188-17.
35.Li T, Qiu Y, Yang HS, et al. Systematic review and meta-analysis: association of a pre-illness Western dietary pattern with the risk of developing inflammatory bowel disease[J]. J Dig Dis, 2020, 21(7): 362-371. DOI: 10.1111/1751-2980.12910.
36.Cox SR, Lindsay JO, Fromentin S, et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial[J]. Gastroenterology, 2020, 158(1): 176-188.e7. DOI: 10.1053/j.gastro.2019.09.024.
37.Laura AB, Arnau VVi, Floris I, et al. Long-term dietary patterns are associated with pro-inflammatory and anti- inflammatory features of the gut microbiome[J]. Gut, 2021, 70(7): 1287-1298. DOI: 10.1136/gutjnl-2020-322670.
38.Albenberg L, Brensinger, CM, Wu Q, et al. A diet low in red and processed meat does not reduce rate of Crohn's disease flares[J]. Gastroenterology, 2019, 157(1): 128-136.e5. DOI: 10.1053/j.gastro.2019.03.015.
39.Saul S, Fuessel J, Runde J. Pediatric digestive health and the gut microbiome: existing therapies and a look to the future[J]. Pediatr Ann, 2021, 50(8): e336-e342. DOI: 10.3928/19382359-20210720-01.
40.Mishra J, Stubbs M, Kuang L, et al. Inflammatory bowel disease therapeutics: a focus on probiotic engineering[J]. Mediators Inflamm, 2022, 2022: 9621668. DOI: 10.1155/ 2022/9621668.
41.Chen X, Fu Y, Wang L, et al. Bifidobacterium longum and VSL#3® amelioration of TNBS-induced colitis associated with reduced HMGB1 and epithelial barrier impairment[J]. Dev Comp Immunol. 2019, 92: 77-86. DOI: 10.1016/j.dci. 2018.09.006.
42.Zhang XF, Guan XX, Tang YJ, et al. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: a systematic review and meta analysis[J]. Eur J Nutr, 2021, 60(5): 2855-2875. DOI: 10.1007/s00394-021-02503-5.
43.Niu W, Yang F, Fu Z, et al. The role of enteric dysbacteriosis and modulation of gut microbiota in the treatment of inflammatory bowel disease[J]. Microb Pathog, 2022, 165: 105381. DOI: 10.1016/j.micpath.2021.105381.
44.Bekkers M, Stojkovic B, Kaiko GE. Mining the microbiome and microbiota-derived molecules in in-flammatory bowel disease[J]. Int J Mol Sci, 2021, 22(20): 11243. DOI: 10.3390/ijms222011243.
45.Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remis-sion in patients with ulcerative colitis: a randomized clinical trial[J]. JAMA, 2019, 321(2): 156-164. DOI: 10.1001/jama.2018.20046.
46.Tan P, Li X, Shen J, et al. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update[J]. Front Pharmacol, 2020, 11: 574533. DOI: 10.3389/fphar.2020.574533.
47.Sood A, Singh A, Mahajan R, et al. Acceptability, tolerability, and safety of fecal microbiota transplantation in pa-tients with active ulcerative colitis (AT&S Study)[J]. J Gastroenterol Hepatol, 2020, 35(3): 418-424. DOI: 10.1111/jgh.14829.
48.Dovrolis N, Michalopoulos G, Theodoropoulos GE, et al. The interplay between mucosal microbiota composition and host gene-expression is linked with infliximab response in inflammatory bowel dis-eases[J]. Microorganisms, 2020, 8(3): 438. DOI: 10.3390/microorganisms8030438.
49.Busquets D, Oliver L, Amoedo J, et al. RAID prediction: pilot study of fecal microbial signature with capacity to predict response to anti-TNF treatment[J]. Inflamm Bowel Dis, 2021, 27(Suppl 2): S63-S66. DOI: 10.1093/ibd/izab273.
50.Ananthakrishnan AN, Luo C, Yajnik V, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases[J]. Cell Host Microbe, 2017, 21(5): 603-610.e3. DOI: 10.1016/j. chom.2017.04.010.
51.Radhakrishnan ST, Alexander JL, Mullish BH, et al. Systematic review: the association between the gut microbiota and medical therapies in inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2022, 55(1): 26-48. DOI: 10.1111/apt.16656.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20242501
-
Development situation and expert suggestion on "Internet+Traditional Chinese Medicine" in China
Jun. 01, 20242191
-
Analysis of the relationship between home skin care associated factors and disease severity for children with atopic dermatitis
Jun. 01, 20241940
-
Mechanism of ALKBH5 mediated m6A regulation of Galectin-9 in the invasion, migration, and proliferation of endometrial stromal cell
Jun. 01, 20241760
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20241588
-
Analysis of the disease burden of benign prostatic hyperplasia in China, the United States and Germany at 1990 and 2019
Jun. 01, 20241507
-
Risk factors and prediction model construction for poor outcome in asthma combined with severe community-acquired pneumonia in children
Jun. 01, 20241481
-
Relationship and potential mechanisms between gut microbiota and benign prostatic hyperplasia
Jun. 01, 20241329