Objective To construct an ARIMA multiplicative seasonal model suitable for predicting the clinical demand of red blood cells in Wuhu City, and provide a scientific basis for blood collection organizations to formulate red blood cell collection and supply balance programs and recruitment plans.
Methods The ARIMA model was constructed based on the clinical use of red blood cells in Wuhu City Central Blood Station from January 2012 to December 2021. The data were processed through time series stabilization, model identification, and parameter verification to determine the optimal model. The red blood cell clinical use demand from January 2022 to August 2022 was predicted using the optimal model, and the prediction effect was verified using actual values.
Results The optimal model was ARIMA (0,1,0) (1,1,0)12, with BIC=12.162. The ACF and PACF of the residual sequence were basically within the 95% confidence interval, and the Ljung-Box Q value was 15.265, with P=0.576>0.05, which met the requirements of white noise sequence, and the model fitting was validated. Except for April and May, the actual values of each month were within the 95% confidence interval of the predicted value, and the average relative error between the ARIMA model prediction value and the actual value was -0.00375, and the mean absolute percentage error (MAPE) was 7.087%, with good prediction effect.
Conclusion The ARIMA (0,1,0) (1,1,0)12 model can be used to predict the clinical demand of red blood cells, and it can provide a reference for blood collection, non-remunerated blood donation recruitment and inventory management.
1.新华社. 我国献血人次创新高, 无偿献血激励机制再优化 [EB/OL]. (2024-06-14) [2025-1-9]. https://www.gov.cn/yaowen/liebiao/202406/content_6957279.htm
2.谢丽娟,郑敏,陈剑羽. 基于ARIMA模型的血液制剂使用量时间预测模型的建立与应用[J]. 现代医药卫生, 2020, 36(24): 4047-4051. [Xie LJ, Zheng M, Chen JY. Establishment and application of time prediction model of blood preparation usage based on ARIMA model[J]. Journal of Modern Medicine & Health, 2020, 36(24): 4047-4051.] DOI: 10.3969/j.issn.1009-5519.2020.24.054.
3.周世航,王霓,刘铭,等. 贮存时间对红细胞非典型趋化因子受体1清除及储存趋化因子的影响[J]. 中国输血杂志, 2022, 35(11): 1113-1116. [Zhou SH, Wang N, Liu M, et al. Effect of storage time on erythrocyte atypical chemokine receptor 1 clearance and stored chemokines[J]. Chinese Journal of Blood Transfusion, 2022, 35(11): 1113-1116.] DOI: 10.13303/j.cjbt.issn.1004-549x.2022.11.005.
4.陆诗阳,李银红,田玉洁,等. 基于ARIMA模型的地区武装冲突期间埃博拉病毒病疫情发展趋势预测[J]. 军事医学, 2023, 47(6): 417-421, 426. [Lu SY, Li YH, Tian YJ, et al. Prediction of Ebola virus disease epidemic trend during regional armed conflict based on ARIMA model[J]. Military Medicine, 2023, 47(6): 417-421, 426.] DOI: 10.7644/j.issn.1674-9960. 2023.06.004.
5.李平,黄澳迪,包黎明,等. 基于ARIMA乘积季节模型的中国流行性腮腺炎发病趋势预测分析[J]. 中国疫苗和免疫, 2023, 29(2): 174-179. [Li P, Huang AD, Bao LM, et al. Predictive analysis of mumps incidence trend in China based on ARIMA product seasonal model[J]. China Vaccine and Immunization, 2023, 29(2): 174-179.] DOI: 10.19914/j.CJVI.2023030.
6.任飞林,刘小琦,金玫华,等. 季节性差分自回归滑动平均模型对肺结核发病情况的预测效果研究[J]. 中国防痨杂志, 2023, 45(5): 514-519. [Ren FL, Liu XQ, Jin MH, et al. Study on the predictive effect of seasonal differential autoregressive sliding average model on the incidence of tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(5): 514-519.] DOI: 10.19982/j.issn.1000-6621.20220517.
7.Song X, Xiao J, Deng J, et al. Time series analysis of influenza incidence in Chinese provinces from 2004 to 2011[J]. Medicine (Baltimore), 2016, 95(26): e3929. DOI: 10.1097/md.0000000000003929.
8.Zhou L, Xia J, Yu L, et al. Using a hybrid model to forecast the prevalence of schistosomiasis in humans[J]. Int J Environ Res Public Health, 2016, 13(4): 355. DOI: 10.3390/ijerph13040355.
9.Omar H, Hoang VH, Liu DR. A hybrid neural network model for sales forecasting based on ARIMA and search popularity of article titles[J]. Comput Intell Neurosci, 2016, 2016: 9656453. DOI: 10.1155/2016/9656453.
10.Qiu MY, Song Y. Predicting the direction of stock market index movement using an optimized artificial neural network model[J]. PLoS One, 2016, 11(5): e0155133. DOI: 10.1371/journal.pone.0155133.
11.国家卫生健康委. 国家卫生健康委关于印发《全国血站服务体系建设发展规划(2021—2025年)》的通知[EB/OL]. (2021-12-30) [2025-10-20]. https://www.nhc.gov.cn/yzygj/c100068/202112/8eaf17478aa84dec892c951763877f90.shtml
12.刘芸男,彭荣荣,杨冬燕,等. ARIMA模型在临床红细胞需求预测中的应用[J]. 安徽医科大学学报, 2019, 54(10): 1611-1615. [Liu YN, Peng RR, Yang DY, et al. Application of ARIMA model in clinical red blood cell demand prediction[J]. Journal of Anhui Medical University, 2019, 54(10): 1611-1615.] DOI: 10.19405/j.cnki.issn1000-1492.2019.10.023.
13.张永鹏,席光湘,洪缨,等. 时间序列在辐照单采血小板供应管理上的应用分析[J]. 中国输血杂志, 2020, 33(9): 975-977. [Zhang YP, Xi GX, Hong Y, et al. Application analysis of time series in the management of irradiated single platelet supply[J]. Chinese Journal of Blood Transfusion, 2020, 33(9): 975-977.] DOI: 10.13303/j.cjbt.issn.1004-549x.2020.09.031.
14.刘妍妍,樊晶. ARIMA模型在多种成分血拟合供血预测中的研究[J]. 中国输血杂志, 2021, 34(7): 759-763. [Liu YY, Fan J. ARIMA model in blood supply prediction of multi blood components[J]. Chinese Journal of Blood Transfusion, 2021, 34(7): 759-763.] DOI: 10.13303/j.cjbt.issn.1004-549x.2021.07.022.
15.杨媛淇,何柏霖,温普生,等. ARIMA模型在儿科红细胞用量预测中的应用[J]. 中国输血杂志, 2023, 36(9): 822-826. [Yang YQ, He BL, Wen PS, et al. Application of ARIMA model in predicting red blood cell dosage in pediatrics[J]. Chinese Journal of Blood Transfusion, 2023, 36(9): 822-826.] DOI: 10.13303/j.cjbt.issn.1004-549x.2023.09.016.
16.Fanoodi B, Malmir B, Jahantigh FF. Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models[J]. Comput Biol Med, 2019, 113: 103415. DOI: 10.1016/j.compbiomed.2019.103415.
17.叶柱江,刘赴平. 时间序列自回归移动平均模型在临床红细胞用量预测中的应用[J]. 中国输血杂志, 2013, 26(2): 131-134. [Ye ZJ, Liu FP. Application of autoregressive integrated moving average model in predicting the clinical use of red blood cells [J]. Chinese Journal of Blood Transfusion, 2013, 26(2): 131-134.] DOI: 10.13303/j.cjbt.issn.1004-549x.2013.02.038.
18.谢淑红,张思静,严伟斌,等. 基于ARIMA模型的临床红细胞类血液需求预测研究[J]. 蚌埠医学院学报, 2023, 48(5): 633-636. [Xie SH, Zhang SJ, Yan WB, et al. Research on the prediction of clinical red blood cell blood demand based on the ARIMA model [J]. Journal of Bengbu Medical College, 2023, 48(5): 633-636.] DOI: 10.13898/j.cnki.issn.1000-2200.2023.05.019.
19.黄雪原,黄蓉,董航,等. 基于循证医学证据的《儿科输血指南》构建流程——以新生儿溶血病换血治疗的最佳换血量为例[J]. 中国临床新医学, 2022, 15(8): 694-700. [Huang XY, Huang R, Dong H, et al. The construction process of Guideline for Pediatric Transfusion based on evidence?based medicine—taking the optimal exchange transfusion volume for neonatal hemolytic disease as an example[J]. Chinese Journal of New Clinical Medicine, 2022, 15(8): 694-700.] DOI: 10.3969/j.issn.1674 - 3806.2022.08.05.
20.Pereira A. Performance of time-series methods in forecasting the demand for red blood cell transfusion[J]. Transfusion, 2004, 44(5): 739-746. DOI: 10.1111/j.1537-2995.2004.03363.x.
21.张雪佩,周林,刘敏,等. ARIMA乘积季节模型在食源性疾病月发病数预测中的应用[J]. 公共卫生与预防医学, 2024, 35(5): 6-9. [Zhang XP, Zhou L, Liu M, et al. Application of seasonal ARIMA model in predicting the monthly incidence of foodborne diseases[J]. Journal of Public Health and Preventive Medicine, 2024, 35(5): 6-9.] DOI: 10.3969/j.issn.1006-2483.2024.05.002.
22.黄国军,王乐三,张统宇,等. 自回归滑动平均混合模型在红细胞供应量预测中的应用[J]. 中国输血杂志, 2016, 29(2): 140-144. [Huang GJ, Wang LS, Zhang TY, et al. Autoregressive integrated moving average model and its application in prediction of red blood cell supply[J]. Chinese Journal of Blood Transfusion, 2016, 29(2): 140-144.] DOI: 10.13303/j.cjbt.issn.1004-549x.2016.02.006.
23.Wang M, Jiang Z, You M, et al. An autoregressive integrated moving average model for predicting varicella outbreaks - China, 2019[J]. China CDC Wkly, 2023, 5(31): 698-702. DOI: 10.46234/ccdcw2023.134.
24.龙小琼,吴建君,赵树铭. 三氧自体输血的临床应用进展 [J].中国输血杂志, 2023, 36(2): 108-111. [Long XQ, Wu JJ, Zhao SM. Progress in clinical application of autologous ozonized blood transfusion[J]. Chinese Journal of Blood Transfusion, 2023, 36(2): 108-111.] DOI: 10.13303/j.cjbt.issn.1004-549x.2023.02.004.
25.赵娜,徐铭军. 产科回收式自体输血技术应用进展[J].中国临床医生杂志, 2024, 52(3): 265-270. [Zhao N, Xu MJ. Progress in the application of intraoperative autologous blood salvage technology in obstetrics [J]. Chinese Journal for Clinicians, 2024, 52(3): 265-270.] DOI: 10.3969/j.issn.2095-8552.2024.03.004.
26.陈娟,赵作彦,田金玥,等. 基于机器学习的南京地区献血者精准招募方法的建立和应用[J].临床输血与检验, 2024, 26(4): 535-543. [Chen J, Zhao ZY, Tian JY, et al. Machine learning-based development and application of a precise blood donor recruitment strategy in Nanjing[J]. Journal of Clinical Transfusion and Laboratory Medicine, 2024, 26(4): 535-543.] DOI: 10.3969/j.issn.1671-2587.2024.04.018.