1.Garcia-Malo C, Romero-Peralta S, Cano-Pumarega I. Restless legs syndrome-clinical features[J]. Sleep Med Clin, 2021, 16(2): 233-247. DOI: 10.1016/j.jsmc.2021.02.002.
2.Xue R, Liu G, Ma S, et al. An epidemiologic study of restless legs syndrome among Chinese children and adolescents [J]. Neurol Sci, 2015, 36(6): 971-976. DOI: 10.1007/s10072-015-2206-1.
3.Chen NH, Chuang LP, Yang CT, et al. The prevalence of restless legs syndrome in Taiwanese adults[J]. Psychiatry Clin Neurosci, 2010, 64(2): 170-178. DOI: 10.1111/j.1440-1819.2010.02067.x.
4.Shi Y, Yu H, Ding D, et al. Prevalence and risk factors of restless legs syndrome among Chinese adults in a rural community of Shanghai in China [J]. PLoS One, 2015, 10(3): e0121215. DOI: 10.1371/journal.pone.0121215.
5.Manconi M, Garcia-Borreguero D, Schormair B, et al. Restless legs syndrome[J]. Nat Rev Dis Primers, 2021, 7(1): 80. DOI: 10.1038/s41572-021-00311-z.
6.张茜, 陈项婷, 周长青. 药物治疗不宁腿综合征有效性和安全性的网状Meta分析[J]. 中国循证医学杂志, 2022, 22(8): 908-916. [Zhang Q, Chen XT, Zhou CQ. Network Meta-analysis on the efficacy and safety of pharmacotherapy for restless legs syndrome[J]. Chinese Journal of Evidence-Based Medicine, 2022, 22(8): 908-916.] DOI: 10.7507/1672-2531.202202051.
7.Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome[J]. Nature, 2018, 558(7708): 73-79. DOI: 10.1038/s41586-018-0175-2.
8.Huang W, Xiao J, Ji J, et al. Association of lipid-lowering drugs with COVID-19 outcomes from a Mendelian randomization study[J]. Elife, 2021, 10: e73873. DOI: 10.7554/eLife.73873.
9.Storm CS, Kia DA, Almramhi MM et al. Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome[J]. Nat Commun, 2021, 12(1): 7342. DOI: 10.1038/s41467-021-26280-1.
10.Fauman EB, Hyde C. An optimal variant to gene distance window derived from an empirical definition of cis and trans protein QTLs[J]. BMC Bioinformatics, 2022, 23(1): 169. DOI: 10.1186/s12859-022-04706-x.
11.Ference BA. Interpreting the clinical implications of drug-target Mendelian randomization studies[J]. J Am Coll Cardiol, 2022, 80(7): 663-665. DOI: 10.1016/j.jacc.2022.06.007.
12.Mälarstig A, Grassmann F, Dahl L, et al. Evaluation of circulating plasma proteins in breast cancer using Mendelian randomisation[J]. Nat Commun, 2023, 14(1): 7680. DOI: 10.1038/s41467-023-43485-8.
13.Walker VM, Zheng J, Gaunt TR, et al. Phenotypic causal inference using genome-wide association study data: Mendelian randomization and beyond[J]. Annu Rev Biomed Data Sci, 2022, 5: 1-17. DOI: 10.1146/annurev-biodatasci-122120-024910.
14.Sun BB, Chiou J, Traylor M, et al. Plasma proteomic associations with genetics and health in the UK Biobank[J]. Nature, 2023, 622(7982): 329-338. DOI: 10.1038/s41586-023-06592-6.
15.Hou Y, Xiao Z, Zhu Y, et al. Blood metabolites and chronic kidney disease: a Mendelian randomization study[J]. BMC Med Genomics, 2024, 17(1): 147. DOI: 10.1186/s12920-024-01918-3.
16.Chen Y, Shen J, Wu Y, et al. Tea consumption and risk of lower respiratory tract infections: a two-sample Mendelian randomization study[J]. Eur J Nutr, 2023, 62(1): 385-393. DOI: 10.1007/s00394-022-02994-w.
17.Wu J, Fan Q, He Q, et al. Potential drug targets for myocardial infarction identified through Mendelian randomization analysis and genetic colocalization[J]. Med (Baltimore), 2023, 102(49): e36284. DOI: 10.1097/MD.0000000000036284.
18.Fan J, Zhou Y, Meng R, et al. Cross-talks between gut microbiota and tobacco smoking: a two-sample Mendelian randomization study[J]. BMC Med, 2023, 21(1): 163. DOI: 10.1186/s12916-023-02863-1.
19.Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations[J]. Bioinformatics, 2019, 35(22): 4851-4853. DOI: 10.1093/bioinformatics/btz469.
20.Giambartolomei C, Vukcevic D, SChadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J]. PloS Genet, 2014, 10(5): e1004383. DOI: 10.1371/journal.pgen.1004383.
21.Sun J, Zhao J, Jiang F, et al. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome[J]. Genomme Med, 2023, 15(1): 75. DOI: 10.1186/s13073-023-01229-9.
22.Yuan S, Xu F, Li X, et al. Plasma proteins and onset of type 2 diabetes and diabetic complications: proteome-wide Mendelian randomization and colocalization analyses[J]. Cell Rep Med, 2023, 4(9): 101174. DOI: 10.1016/j.xcrm.2023.101174.
23.Habtemichael EN, Li DT, Camporez JP, et al. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake[J]. Nat Metab, 2021, 3(3): 378-393. DOI: 10.1038/s42255-021-00359-x.
24.Bogan JS, Hendon N, McKee AE, et al. Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking[J]. Nature, 2003, 425(6959): 727-733. DOI: 10.1038/nature01989.
25.Schaffler A, Buechler C. CTRP family: linking immunity to metabolism[J]. Trends Endocrinol Metab, 2012, 23(4): 194-204. DOI: 10.1016/j.tem.2011.12.003.
26.Mirghani H. Restless legs syndrome among sudanese patients with type 2 diabetes mellitus: a case-control study[J]. Cureus, 2020, 12: e9635. DOI: 10.7759/cureus.9635.
27.Dauvilliers Y, Winkelmann J. Restless legs syndrome: update on pathogenesis[J]. Curr Opin Pulm Med, 2013, 19: 594-600. DOI: 10.1097/MCP.0b013e328365ab07.
28.Jiménez-Jiménez FJ, Alonso-Navarro H, et al. Neurochemical features of idiopathic restless legs syndrome[J]. Sleep Med Rev, 2019, 45: 70-87. DOI: 10.1016/j.smrv.2019.03.006.
29.Moll R, Divo M, Langbein L. The human keratins: biology and pathology[J]. Histochem Cell Biol, 2008, 129(6): 705-733. DOI: 10.1007/s00418-008-0435-6.
30.Han S, Fan H, Zhong G, et al. Nuclear KRT19 is a transcriptional corepressor promoting histone deacetylation and liver tumorigenesis[J]. Hepatology, 2025, 81(3): 808-822. DOI: 10.1097/HEP.0000000000000875.
31.Singh S, Patel NA, Soundararajan A, et al. High glucose-induced transcriptomic changes in human trabecular meshwork cells[J]. Res Sq, 2024, 24: rs.3. DOI: 10.21203/rs.3.rs-5690041/v1.
32.ThoméCH , dos Santos GA, Ferreira GA, et al. Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity[J]. Mol Cell Proteomics, 2012, 11(12): 1898-1912. DOI: 10.1074/mcp.M112.019661.
33.Whittaker GC, Orr SJ, Quigley L, et al. The linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) regulates triggering receptor expressed on myeloid cells (TREM)-2 signaling and macrophage inflammatory responses independently of the linker for activation of T cells[J]. J Biol Chem, 2010, 285(5): 2976-2985. DOI: 10.1074/jbc.M109.038398.
34.Walters AS, Rye DB. Review of the relationship of restless legs syndrome and periodic limb movements in sleep to hypertension, heart disease, and stroke[J]. Sleep, 2009, 32(5): 589-597. DOI: 10.1093/sleep/32.5.589.
35.Pedersini R, di Mauro P, Amoroso V, et al. Sleep disturbances and restless legs syndrome in postmenopausal women with early breast cancer given adjuvant aromatase inhibitor therapy[J]. Breast, 2022, 66: 162-168. DOI: 10.1016/j.breast.2022.10.006.
36.Trenkwalder C, Paulus W. Restless legs syndrome: pathophysiology, clinical presentation and management[J]. Nat Rev Neurol, 2010, 6(6): 337-346. DOI: 10.1038/nrneurol.2010.55.
37.Narbona-Sánchez I, Pérez-Linaza A, Serrano-García I, et al. Expression of non-T cell activation linker (NTAL) in jurkat cells negatively regulates TCR signaling: potential role in rheumatoid arthritis[J]. Int J Mol Sci, 2023, 24(5): 4574. DOI: 10.3390/ijms24054574.
38.Qian R, Zhao X, Lyu D, et al. Identification of causal genes and potential drug targets for restless legs syndrome: a comprehensive Mendelian randomization study[J]. Pharmaceuticals (Basel), 2024, 17: 1626. DOI: 10.3390/ph17121626.