1.Cai J, Chen H, Lu M, et al. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis[J]. Cancer Lett, 2021, 520: 1-11. DOI: 10.1016/j.canlet.2021.06.027.
2.Zhao Z, Liu W. Pancreatic cancer: a review of risk factors, diagnosis, and treatment[J]. Technol Cancer Res Treat, 2020, 19: 1533033820962117. DOI: 10.1177/1533033820962117.
3.Okusaka T, Nakamura M, Yoshida M, et al. Clinical practice guidelines for pancreatic cancer 2022 from the Japan pancreas society: a synopsis[J]. Int J Clin Oncol, 2023, 28(4): 493-511. DOI: 10.1007/s10147-023-02317-x.
4.Di Y, Song J, Sun Z, et al. Non-surgical pancreatic cancer: the role of radiotherapy in prolonging survival, a retrospective cohort study in the SEER database[J]. Int J Surg, 2024, 111(1): 818-827. DOI: 10.1097/JS9.0000000000001885.
5.Li E, Huang X, Zhang G, et al. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy[J]. J Exp Clin Cancer Res, 2021, 40(1): 279. DOI: 10.1186/s13046-021-02055-w.
6.涂东,于杰,蔡文科,等. 胰腺癌CAR-T免疫治疗研究进展[J]. 解放军医学杂志, 2022, 47(4): 419-426. [Tu D, Yu J, Cai WK, et al. Research progress of chimeric antigen receptor T-cell immunotherapy in the treatment of pancreatic cancer[J]. Medical Journal of Chinese People's Liberation Army, 2022, 47(4): 419-426.] DOI: 10.11855/j.issn.0577-7402.2022.04.0419.
7.Chakrabarty B, Parekh N. Sequence and structure-based analyses of human ankyrin repeats[J]. Molecules, 2022, 27(2): 423. DOI: 10.3390/molecules27020423.
8.He DN, Wang N, Wen XL, et al. Multi-omics analysis reveals a molecular landscape of the early recurrence and early metastasis in pan-cancer[J]. Front Genet, 2023, 14: 1061364. DOI: 10.3389/fgene.2023.1061364.
9.Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States[J]. Cancer Res, 2014, 74(11): 2913-2921. DOI: 10.1158/0008-5472.CAN-14-0155.
10.He R, Jiang W, Wang C, et al. Global burden of pancreatic cancer attributable to metabolic risks from 1990 to 2019, with projections of mortality to 2030[J]. BMC Public Health, 2024, 24(1): 456. DOI: 10.1186/s12889-024-17875-6.
11.Sawicka E, Mirończuk A, Wojtukiewicz MZ, et al. Chemoradiotherapy for locally advanced pancreatic cancer patients: is it still an open question?[J]. Contemp Oncol (Pozn), 2016, 20(2): 102-108. DOI: 10.5114/wo.2016.60066.
12.Liu L, Huang X, Shi F, et al. Combination therapy for pancreatic cancer: anti-PD-(L)1-based strategy[J]. J Exp Clin Cancer Res, 2022, 41(1): 56. DOI: 10.1186/s13046-022-02273-w.
13.Wu J, Cai J. Dilemma and challenge of immunotherapy for pancreatic cancer[J]. Dig Dis Sci, 2021, 66(2): 359-368. DOI: 10.1007/s10620-020-06183-9.
14.Utsumi T, Hosokawa T, Shichita M, et al. ANKRD22 is an N-myristoylated hairpin-like monotopic membrane protein specifically localized to lipid droplets[J]. Sci Rep, 2021, 11(1): 19233. DOI: 10.1038/s41598-021-98486-8.
15.Cruz ALS, Carrossini N, Teixeira LK, et al. Cell cycle progression regulates biogenesis and cellular localization of lipid droplets[J]. Mol Cell Biol, 2019, 39(9): e00374-e00418. DOI: 10.1128/MCB.00374-18.
16.Petan T. Lipid droplets in cancer[J]. Rev Physiol Biochem Pharmacol, 2023, 185: 53-86. DOI: 10.1007/112_2020_51.
17.Liu J, Wu J, Wang R, et al. ANKRD22 drives rapid proliferation of Lgr5+ cells and acts as a promising therapeutic target in gastric mucosal injury[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(4): 1433-1455. DOI: 10.1016/j.jcmgh.2021.06.020.
18.Yin J, Fu W, Dai L, et al. ANKRD22 promotes progression of non-small cell lung cancer through transcriptional up-regulation of E2F1[J]. Sci Rep, 2017, 7(1): 4430. DOI: 10.1038/s41598-017-04818-y.
19.Cao J, Zhang H, Wei X, et al. ANKRD22 promotes M2 polarization in lung adenocarcinoma macrophages via the glycolytic pathway[J]. Chem Biol Drug Des, 2024, 103(1): e14445. DOI: 10.1111/cbdd.14445.
20.Liu X, Zhao J, Wu Q, et al. ANKRD22 promotes glioma proliferation, migration, invasion, and epithelial-mesenchymal transition by upregulating E2F1-mediated MELK expression[J]. J Neuropathol Exp Neurol, 2023, 82(7): 631-640. DOI: 10.1093/jnen/nlad034.
21.Wu Y, Liu H, Gong Y, et al. ANKRD22 enhances breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression[J]. Bosn J Basic Med Sci, 2021, 21(3): 294-304. DOI: 10.17305/bjbms.2020.4701.
22.Pan T, Liu J, Xu S, et al. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells[J]. Theranostics, 2020, 10(2): 516-536. DOI: 10.7150/thno.37472.
23.Qiu Y, Yang S, Pan T, et al. ANKRD22 is involved in the progression of prostate cancer[J]. Oncol Lett, 2019, 18(4): 4106-4113. DOI: 10.3892/ol.2019.10738.
24.Chen H, Yang K, Pang L, et al. ANKRD22 is a potential novel target for reversing the immunosuppressive effects of PMN-MDSCs in ovarian cancer[J]. J Immunother Cancer, 2023, 11(2): e005527. DOI: 10.1136/jitc-2022-005527.
25.Luo L, Li Y, Huang C, et al. A new 7-gene survival score assay for pancreatic cancer patient prognosis prediction[J]. Am J Cancer Res, 2021, 11(2): 495-512. https://pubmed.ncbi.nlm.nih.gov/33575083/
26.Wu M, Li X, Zhang T, et al. Identification of a nine-gene signature and establishment of a prognostic nomogram predicting overall survival of pancreatic cancer[J]. Front Oncol, 2019, 9: 996. DOI: 10.3389/fonc.2019.00996.