Welcome to visit Zhongnan Medical Journal Press Series journal website!

Expression of ANKRD22 and its effects on pancreatic cancer

Published on Jul. 25, 2025Total Views: 586 timesTotal Downloads: 147 timesDownloadMobile

Author: SUN Zhijia SONG Zhuo LIU Xu LI Xinji WANG Yingjie

Affiliation: Department of Tumor Radiotherapy, PLA Air Force Medical Center, Beijing 100142, China

Keywords: Pancreatic cancer ANKRD22 Clinical prognosis Cell proliferation Cell invasion

DOI: 10.12173/j.issn.1004-5511.202410040

Reference: Sun ZJ, Song Z, Liu X, Li XJ, Wang YJ. Expression of ANKRD22 and its effects on pancreatic cancer[J]. Yixue Xinzhi Zazhi, 2025, 35(7): 819-826. DOI: 10.12173/j.issn.1004-5511.202410040. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To explore the expression of ankyrin repeat domain 22 (ANKRD22) in pancreatic cancer (PC), to analyze its clinical prognosis, and investigate its impact on PC cell phenotypes.

Methods  The expression levels of ANKRD22 and their impact on PC prognosis were analyzed using R and Perl languages in the TCGA-PC and GEO databases. ANKRD22-interfered PANC-1 and AsPC-1 cell line models were constructed using siRNA. Cell proliferation and invasion capabilities were assessed using CCK-8 assays, colony formation, and Transwell experiments. The regulatory effect of ANKRD22 knockdown on cell apoptosis was evaluated by flow cytometry.

Results  Compared to normal pancreatic tissues, ANKRD22 expression was significantly elevated in PC tissues. Patients with high ANKRD22 expression had a significantly lower overall survival than those with low expression, correlating with poor prognosis. Knockdown of ANKRD22 significantly attenuated the proliferation and invasion capabilities of PC cells but did not affect cell apoptosis.

Conclusion  ANKRD22 is highly expressed in PC and promotes the proliferation and invasion of PC cells. ANKRD22 may serve as a crucial therapeutic target for PC.

Full-text
Please download the PDF version to read the full text: download
References

1.Cai J, Chen H, Lu M, et al. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis[J]. Cancer Lett, 2021, 520: 1-11. DOI: 10.1016/j.canlet.2021.06.027.

2.Zhao Z, Liu W. Pancreatic cancer: a review of risk factors, diagnosis, and treatment[J]. Technol Cancer Res Treat, 2020, 19: 1533033820962117. DOI: 10.1177/1533033820962117.

3.Okusaka T, Nakamura M, Yoshida M, et al. Clinical practice guidelines for pancreatic cancer 2022 from the Japan pancreas society: a synopsis[J]. Int J Clin Oncol, 2023, 28(4): 493-511. DOI: 10.1007/s10147-023-02317-x.

4.Di Y, Song J, Sun Z, et al. Non-surgical pancreatic cancer: the role of radiotherapy in prolonging survival, a retrospective cohort study in the SEER database[J]. Int J Surg, 2024, 111(1): 818-827. DOI: 10.1097/JS9.0000000000001885.

5.Li E, Huang X, Zhang G, et al. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy[J]. J Exp Clin Cancer Res, 2021, 40(1): 279. DOI: 10.1186/s13046-021-02055-w.

6.涂东,于杰,蔡文科,等. 胰腺癌CAR-T免疫治疗研究进展[J]. 解放军医学杂志, 2022, 47(4): 419-426. [Tu D, Yu J, Cai  WK, et al. Research progress of chimeric antigen receptor T-cell immunotherapy in the treatment of pancreatic cancer[J]. Medical Journal of Chinese People's Liberation Army, 2022, 47(4): 419-426.] DOI: 10.11855/j.issn.0577-7402.2022.04.0419.

7.Chakrabarty B, Parekh N. Sequence and structure-based analyses of human ankyrin repeats[J]. Molecules, 2022, 27(2): 423. DOI: 10.3390/molecules27020423.

8.He DN, Wang N, Wen XL, et al. Multi-omics analysis reveals a molecular landscape of the early recurrence and early metastasis in pan-cancer[J]. Front Genet, 2023, 14: 1061364. DOI: 10.3389/fgene.2023.1061364.

9.Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States[J]. Cancer Res, 2014, 74(11): 2913-2921. DOI: 10.1158/0008-5472.CAN-14-0155.

10.He R, Jiang W, Wang C, et al. Global burden of pancreatic cancer attributable to metabolic risks from 1990 to 2019, with projections of mortality to 2030[J]. BMC Public Health, 2024, 24(1): 456. DOI: 10.1186/s12889-024-17875-6.

11.Sawicka E, Mirończuk A, Wojtukiewicz MZ, et al. Chemoradiotherapy for locally advanced pancreatic cancer patients: is it still an open question?[J]. Contemp Oncol (Pozn), 2016, 20(2): 102-108. DOI: 10.5114/wo.2016.60066.

12.Liu L, Huang X, Shi F, et al. Combination therapy for pancreatic cancer: anti-PD-(L)1-based strategy[J]. J Exp Clin Cancer Res, 2022, 41(1): 56. DOI: 10.1186/s13046-022-02273-w.

13.Wu J, Cai J. Dilemma and challenge of immunotherapy for pancreatic cancer[J]. Dig Dis Sci, 2021, 66(2): 359-368. DOI: 10.1007/s10620-020-06183-9.

14.Utsumi T, Hosokawa T, Shichita M, et al. ANKRD22 is an N-myristoylated hairpin-like monotopic membrane protein specifically localized to lipid droplets[J]. Sci Rep, 2021, 11(1): 19233. DOI: 10.1038/s41598-021-98486-8.

15.Cruz ALS, Carrossini N, Teixeira LK, et al. Cell cycle progression regulates biogenesis and cellular localization of lipid droplets[J]. Mol Cell Biol, 2019, 39(9): e00374-e00418. DOI: 10.1128/MCB.00374-18.

16.Petan T. Lipid droplets in cancer[J]. Rev Physiol Biochem Pharmacol, 2023, 185: 53-86. DOI: 10.1007/112_2020_51.

17.Liu J, Wu J, Wang R, et al. ANKRD22 drives rapid proliferation of Lgr5+ cells and acts as a promising therapeutic target in gastric mucosal injury[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(4): 1433-1455. DOI: 10.1016/j.jcmgh.2021.06.020.

18.Yin J, Fu W, Dai L, et al. ANKRD22 promotes progression of non-small cell lung cancer through transcriptional up-regulation of E2F1[J]. Sci Rep, 2017, 7(1): 4430. DOI: 10.1038/s41598-017-04818-y.

19.Cao J, Zhang H, Wei X, et al. ANKRD22 promotes M2 polarization in lung adenocarcinoma macrophages via the glycolytic pathway[J]. Chem Biol Drug Des, 2024, 103(1): e14445. DOI: 10.1111/cbdd.14445.

20.Liu X, Zhao J, Wu Q, et al. ANKRD22 promotes glioma proliferation, migration, invasion, and epithelial-mesenchymal transition by upregulating E2F1-mediated MELK expression[J]. J Neuropathol Exp Neurol, 2023, 82(7): 631-640. DOI: 10.1093/jnen/nlad034.

21.Wu Y, Liu H, Gong Y, et al. ANKRD22 enhances breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression[J]. Bosn J Basic Med Sci, 2021, 21(3): 294-304. DOI: 10.17305/bjbms.2020.4701.

22.Pan T, Liu J, Xu S, et al. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells[J]. Theranostics, 2020, 10(2): 516-536. DOI: 10.7150/thno.37472.

23.Qiu Y, Yang S, Pan T, et al. ANKRD22 is involved in the progression of prostate cancer[J]. Oncol Lett, 2019, 18(4): 4106-4113. DOI: 10.3892/ol.2019.10738.

24.Chen H, Yang K, Pang L, et al. ANKRD22 is a potential novel target for reversing the immunosuppressive effects of PMN-MDSCs in ovarian cancer[J]. J Immunother Cancer, 2023, 11(2): e005527. DOI: 10.1136/jitc-2022-005527.

25.Luo L, Li Y, Huang C, et al. A new 7-gene survival score assay for pancreatic cancer patient prognosis prediction[J]. Am J Cancer Res, 2021, 11(2): 495-512. https://pubmed.ncbi.nlm.nih.gov/33575083/

26.Wu M, Li X, Zhang T, et al. Identification of a nine-gene signature and establishment of a prognostic nomogram predicting overall survival of pancreatic cancer[J]. Front Oncol, 2019, 9: 996. DOI: 10.3389/fonc.2019.00996.