Welcome to visit Zhongnan Medical Journal Press Series journal website!

Advances in early diagnosis and treatment of Crohn's disease

Published on Oct. 25, 2022Total Views: 2702 timesTotal Downloads: 1144 timesDownloadMobile

Author: Liang CHEN 1 Chun-Jin XU 2 Zhan-Ju LIU 1

Affiliation: 1. Department of Gastroenterology, Tenth People's Hospital of Tongji University, Shanghai 200072, China 2. Department of Gastroenterology, First People's Hospital of Shangqiu, Shangqiu 476100, Henan Province, China

Keywords: Crohn's disease Biological agent Biomaker Targeted biotherapy

DOI: 10.12173/j.issn.1004-5511.202206041

Reference: Chen L, Xu CJ, Liu ZJ. Advances in early diagnosis and treatment of Crohn's disease[J]. Yixue Xinzhi Zazhi, 2022, 32(5): 357-364. DOI: 10.12173/j.issn.1004-5511.202206041.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

The early symptoms of Crohn's disease (CD) are atypical and lacking in specificity so ren-dering early diagnosis of CD challenging. Therefore, improving the identification of early CD is conducive to early diagnosis and timely treatment, thus improving the prognosis of patients with CD and reducing the disability rate and associated disease burden. This paper reviews the research progress in develop-ing early diagnostic biomarkers and targeted biotherapy for CD.

Full-text
Please download the PDF version to read the full text: download
References

1.Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 56-66. DOI: 10.1038/s41575-020-00360-x.

2.Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet, 2017, 390(10114): 2769-2778. DOI: 10.1016/S0140-6736(17)32448-0.

3.Kaplan GG, Ng SC. Globalisation of inflammatory bowel disease: perspectives from the evolution of inflammatory bowel disease in the UK and China[J]. Lancet Gastroenterol Hepatol, 2016, 1(4): 307-316. DOI: 10.1016/S2468-1253(16)30077-2.

4.中华医学会消化病学分会炎症性肠病学组. 炎症性肠病诊断与治疗的共识意见(2018年,北京)[J]. 中华消化杂志, 2018, 38(5): 292-311. [Inflammatory Bowel Disease Group, Digestive Disease Branch, Chinese Medical Association. Consensus opinion on the diagnosis and treatment of inflammatory bowel disease (2018, Beijing)[J]. Chinese Journal of Digestion, 2018, 38(5): 292-311.] DOI: 10.3760/cma.j.issn.0254-1432.2018.05.002.

5.Murthy SK, Begum J, Benchimol EI, et al. Introduction of anti-TNF therapy has not yielded expected declines in hospitalisation and intestinal resection rates in inflammatory bowel diseases: a population-based interrupted time series study[J]. Gut, 2020, 69(2): 274-282. DOI: 10.1136/gutjnl-2019-318440.

6.Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis[J]. N Engl J Med, 2005, 353(23): 2462-2476. DOI: 10.1056/NEJMoa050516.

7.Atreya R, Neurath MF, Siegmund B. Personalizing treatment in IBD: hype or reality in 2020? can we predict response to anti-TNF?[J]. Front Med (Lausanne), 2020, 7: 517. DOI: 10.3389/fmed.2020.00517.

8.Dulai PS, Peyrin-Biroulet L, Demuth D, et al. Early intervention with vedolizumab on longer term surgery rates in Crohn's disease: post hoc analysis of the GEMINI phase 3 and long-term safety programs[J]. J Crohns Colitis, 2020, 15(2): 195-202. DOI: 10.1093/ecco-jcc/jjaa153.

9.Sipponen T, Savilahti E, Kärkkäinen P, et al. Fecal calprotectin, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn's disease[J]. Inflamm Bowel Dis, 2008, 14(10): 1392-1398. DOI: 10.1002/ibd.20490.

10.Kristensen V, Røseth A, Ahmad T, et al. Fecal calprotectin: a reliable predictor of mucosal healing after treatment for active ulcerative colitis[J]. Gastroenterol Res Pract, 2017, 2017: 2098293. DOI: 10.1155/2017/2098293.

11.Beltrán B, Iborra M, Sáez-González E, et al. Fecal calprotectin pretreatment and induction infliximab levels for prediction of primary nonresponse to infliximab therapy in Crohn's disease[J]. Dig Dis, 2019, 37(2): 108-115. DOI: 10.1159/000492626.

12.Bertani L, Blandizzi C, Mumolo MG, et al. Fecal calprotectin predicts mucosal healing in patients with ulcerative colitis treated with biological therapies: a prospective study[J]. Clin Transl Gastroenterol, 2020, 11(5): e00174. DOI: 10.14309/ctg.0000000000000174.

13.Mumolo MG, Bertani L, Ceccarelli L, et al. From bench to bedside: fecal calprotectin in inflammatory bowel diseases clinical setting[J]. World J Gastroenterol, 2018, 24(33): 3681-3694. DOI: 10.3748/wjg.v24.i33.3681.

14.Colombel JF, Panaccione R, Bossuyt P, et al. Effect of tight control management on Crohn's disease (CALM): a multicentre, randomised, controlled phase 3 trial[J]. Lancet, 2017, 390(10114): 2779-2789. DOI: 10.1016/S0140-6736(17)32641-7.

15.Hemati Z, Derakhshandeh A, Haghkhah M, et al. Mammalian cell entry operons; novel and major subset candidates for diagnostics with special reference to mycobacterium avium subspecies paratuberculosis infection[J]. Vet Q, 2019, 39(1): 65-75. DOI: 10.1080/016 52176.2019.1641764.

16.Fujioka Y, Nishide S, Ose T, et al. A sialylated voltage-dependent Ca2+ channel binds hemagglutinin and mediates influenza a virus entry into mammalian cells[J]. Cell Host Microbe, 2018, 23(6): 809-818.e5. DOI: 10.1016/j.chom.2018.04.015.

17.Yan N. Structural biology of the major facilitator superfamily transporters[J]. Annu Rev Biophys, 2015, 44: 257-283. DOI: 10.1146/annurev-biophys-060414- 033901.

18.Gao H, He Q, Xu C, et al. The Development and Validation of Anti-paratuberculosis-nocardia Polypeptide Antibody [Anti-pTNP] for the Diagnosis of Crohn's Disease[J]. J Crohns Colitis, 2022, 16(7): 1110-1123. DOI: 10.1093/ecco-jcc/jjac008.

19.Florholmen JR, Johnsen KM, Meyer R, et al. Discovery and validation of mucosal TNF expression combined with histological score - a biomarker for personalized treatment in ulcerative colitis[J]. BMC Gastroenterol, 2020, 20(1): 321. DOI: 10.1186/s12876-020-01447-0.

20.Olsen T, Cui G, Goll R, et al. Infliximab therapy decreases the levels of TNF-alpha and IFN-gamma mRNA in colonic mucosa of ulcerative colitis[J]. Scand J Gastroenterol, 2009, 44(6): 727-735. DOI: 10.1080/00365520902803507.

21.Rismo R, Olsen T, Cui G, et al. Normalization of mucosal cytokine gene expression levels predicts long-term remission after discontinuation of anti-TNF therapy in Crohn's disease[J]. Scand J Gastroenterol, 2013, 48(3): 311-319. DOI: 10.3109/00365521.2012.758773.

22.Olsen T, Rismo R, Gundersen MD, et al. Normalization of mucosal tumor necrosis factor-α: a new criterion for discontinuing infliximab therapy in ulcerative colitis[J]. Cytokine, 2016, 79: 90-95. DOI: 10.1016/j.cyto.2015.12.021.

23.Rismo R, Olsen T, Cui G, et al. Mucosal cytokine gene expression profiles as biomarkers of response to infliximab in ulcerative colitis[J]. Scand J Gastroenterol, 2012, 47(5): 538-547. DOI: 10.3109/00365521.2012.667146.

24.Belarif L, Danger R, Kermarrec L, et al. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease[J]. J Clin Invest, 2019, 129(5): 1910-1925. DOI: 10.1172/JCI121668.

25.Kim WM, Kaser A, Blumberg RS. A role for oncostatin M in inflammatory bowel disease[J]. Nat Med, 2017, 23(5): 535-536. DOI: 10.1038/nm.4338.

26.Sandborn WJ, Feagan BG, Marano C, et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis[J]. Gastroenterology, 2014, 146(1): 85-95. DOI: 10.1053/j.gastro.2013.05.048.

27.Kullberg MC, Rothfuchs AG, Jankovic D, et al. Helicobacter hepaticus-induced colitis in interleukin-10-deficient mice: cytokine requirements for the induction and maintenance of intestinal inflammation[J]. Infect Immun, 2001, 69(7): 4232-4241. DOI: 10.1128/IAI.69.7.4232-4241.2001.

28.He C, Yu T, Shi Y, et al. MicroRNA 301A promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1[J]. Gastroenterology, 2017, 152(6): 1434-1448.e15. DOI: 10.1053/j.gastro. 2017.01.049.

29.Olaru AV, Selaru FM, Mori Y, et al. Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation[J]. Inflamm Bowel Dis, 2011, 17(1): 221-231. DOI: 10.1002/ibd.21359.

30.Wu W, He C, Liu C, et al. miR-10a inhibits dendritic cell activation and Th1/Th17 cell immune responses in IBD[J]. Gut, 2015, 64(11): 1755-1764. DOI: 10.1136/gutjnl- 2014-307980.

31.Ge Y, Sun M, Wu W, et al. MicroRNA-125a suppresses intestinal mucosal inflammation through targeting ETS-1 in patients with inflammatory bowel diseases[J]. J Autoimmun, 2019, 101: 109-120. DOI: 10.1016/j.jaut.2019.04.014.

32.Tian Y, Xu J, Li Y, et al. MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice[J]. Gastroenterology, 2019, 156(8): 2281-2296.e6. DOI: 10.1053/j.gastro.2019.02.023.

33.Brooks J, Watson A, Korcsmaros T. Omics approaches to identify potential biomarkers of inflammatory diseases in the focal adhesion complex[J]. Genomics Proteomics Bioinformatics, 2017, 15(2): 101-109. DOI: 10.1016/j.gpb.2016.12.003.

34.Meuwis MA, Fillet M, Geurts P, et al. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling[J]. Biochem Pharmacol, 2007, 73(9): 1422-1433.DOI: 10.1016/j.bcp.2006.12.019.

35.Zhang F, Xu C, Ning L, et al. Exploration of serum proteomic profiling and diagnostic model that differentiate Crohn's disease and intestinal tuberculosis[J]. PLoS One, 2016, 11(12): e0167109. DOI: 10.1371/journal.pone. 0167109.

36.Starr AE, Deeke SA, Ning Z, et al. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn's disease from UC[J]. Gut, 2017, 66(9): 1573-1583. DOI: 10.1136/gutjnl-2015-310705.

37.Drobin K, Assadi G, Hong MG, et al. Targeted analysis of serum proteins encoded at known inflammatory bowel disease risk loci[J]. Inflamm Bowel Dis, 2019, 25(2): 306-316. DOI: 10.1093/ibd/izy326.

38.Medina-Medina R, Iglesias-Flores E, Benítez J, et al. Proteomic markers of response to anti-TNF drugs in patients with Crohn's disease[J]. Journal of Crohn's and Colitis, 2019, 13(S1): S090. DOI: 10.1093/ecco-jcc/jjy222.132.

39.D'Haens G, Kelly O, Battat R, et al. Development and validation of a test to monitor endoscopic activity in patients with Crohn's disease based on serum levels of proteins[J]. Gastroenterology, 2020, 158(3): 515-526.e10.  DOI: 10.1053/j.gastro.2019.10.034.

40.Pierre N, Baiwir D, Huynh-Thu VA, et al. Discovery of biomarker candidates associated with the risk of short-term and mid/long-term relapse after infliximab withdrawal in Crohn's patients: a proteomics-based study[J]. Gut, 2020, gutjnl-2020-322100.  DOI: 10.1136/gutjnl-2020-322100.

41.Magnusson MK, Strid H, Sapnara M, et al. Anti-TNF therapy response in patients with ulcerative colitis is associated with colonic antimicrobial peptide expression and microbiota composition[J]. J Crohns Colitis, 2016, 10(8): 943-952. DOI: 10.1093/ecco-jcc/jjw051.

42.Wang Y, Gao X, Zhang X, et al. Microbial and metabolic features associated with outcome of infliximab therapy in pediatric Crohn's disease[J]. Gut Microbes, 2021, 13(1): 1-18. DOI: 10.1080/19490976.2020.1865708.

43.Aden K, Rehman A, Waschina S, et al. Metabolic functions of gut microbes associate with efficacy of tumor necrosis factor antagonists in patients with inflammatory bowel diseases[J]. Gastroenterology, 2019, 157(5): 1279-1292.e11. DOI: 10.1053/j.gastro.2019.07.025.

44.Estevinho MM, Rocha C, Correia L, et al. Features of fecal and colon microbiomes associate with responses to biologic therapies for inflammatory bowel diseases: a systematic review[J]. Clin Gastroenterol Hepatol, 2020, 18(5): 1054-1069. DOI: 10.1016/j.cgh.2019.08.063.

45.D'Haens G, Baert F, van Assche G, et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn's disease: an open randomised trial[J]. Lancet, 2008, 371(9613): 660-667.DOI: 10.1016/S0140-6736(08)60304-9.

46.Colombel JF, Reinisch W, Mantzaris GJ, et al. Randomised clinical trial: deep remission in biologic and immunomodulator naïve patients with Crohn's disease - a SONIC post hoc analysis[J]. Aliment Pharmacol Ther, 2015, 41(8): 734-746. DOI: 10.1111/apt.13139.

47.Colombel JF, Sandborn WJ, Rutgeerts P, et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn's disease: the CHARM trial[J]. Gastroenterology, 2007, 132(1): 52-65. DOI: 10.1053/j.gastro.2006.11.041.

48.Schreiber S, Reinisch W, Colombel JF, et al. Subgroup analysis of the placebo-controlled CHARM trial: increased remission rates through 3 years for adalimumab-treated patients with early Crohn's disease[J]. J Crohns Colitis, 2013, 7(3): 213-221. DOI: 10.1016/j.crohns.2012.05.015.

49.Rubin DT, Uluscu O, Sederman R. Response to biologic therapy in Crohn's disease is improved with early treatment: an analysis of health claims data[J]. Inflamm Bowel Dis, 2012, 18(12): 2225-2231. DOI: 10.1002/ibd. 22925.

50.Mandel MD, Balint A, Golovics PA, et al. Decreasing trends in hospitalizations during anti-TNF therapy are associated with time to anti-TNF therapy: results from two referral centres[J]. Dig Liver Dis, 2014, 46(11): 985-990.DOI: 10.1016/j.dld.2014.07.168.

51.Safroneeva E, Vavricka SR, Fournier N, et al. Impact of the early use of immunomodulators or TNF antagonists on bowel damage and surgery in Crohn's disease[J]. Aliment Pharmacol Ther, 2015, 42(8): 977-989. DOI: 10.1111/apt.13363.

52.Ma C, Beilman CL, Huang VW, et al. Anti-TNF therapy within 2 years of crohn's disease diagnosis improves patient outcomes: a retrospective cohort study[J]. Inflamm Bowel Dis, 2016, 22(4): 870-879. DOI: 10.1097/MIB. 0000000000000679.

53.Van Assche G, Van Ranst M, Sciot R, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease[J]. N Engl J Med, 2005, 353(4): 362-368. DOI: 10.1056/NEJMoa051586.

54.Sandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn's disease[J]. N Engl J Med, 2013, 369(8): 711-721. DOI: 10.1056/NEJMoa1215739.

55.Sands BE, Feagan BG, Rutgeerts P, et al. Effects of vedolizumab induction therapy for patients with Crohn's disease in whom tumor necrosis factor antagonist treatment failed[J]. Gastroenterology, 2014, 147(3): 618-627.e3. DOI: 10.1053/j.gastro.2014.05.008.

56.Sands BE, Sandborn WJ, Van Assche G, et al. Vedolizumab as induction and maintenance therapy for Crohn's disease in patients naïve to or who have failed tumor necrosis factor antagonist therapy[J]. Inflamm Bowel Dis, 2017, 23(1): 97-106. DOI: 10.1097/MIB.0000000000000979.

57.Faleck DM, Winters A, Chablaney S, et al. Shorter disease duration is associated with higher rates of response to vedolizumab in patients with Crohn's disease but not ulcerative colitis[J]. Clin Gastroenterol Hepatol, 2019, 17(12): 2497-2505.e1. DOI: 10.1016/j.cgh.2018.12.040.

58.Feagan BG, Sandborn WJ, Gasink C, et al. Ustekinumab as induction and maintenance therapy for Crohn's disease[J]. N Engl J Med, 2016, 375(20): 1946-1960. DOI: 10.1056/NEJMoa1602773.