Welcome to visit Zhongnan Medical Journal Press Series journal website!

LncRNA GATA3-AS1 promotes the proliferation and migration of breast cancer cells and the mechanisms underlying its action

Published on Apr. 25, 2022Total Views: 4274 timesTotal Downloads: 4305 timesDownloadMobile

Author: Qi JIANG 1 Yi-Qing XI 2 Lei WEI 1

Affiliation: 1. Department of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China 2. Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: LncRNA GATA3-AS1 Breast cancer Proliferation Migration Regulatory mechanism

DOI: 10.12173/j.issn.1004-5511.202202018

Reference: Jiang Q, Xi YQ, Wei L. LncRNA GATA3-AS1 promotes the proliferation and migration of breast cancer cells and the mechanisms underlying its action[J]. Yixue Xinzhi Zazhi, 2022, 32(2): 127-137. DOI: 10.12173/j.issn.1004-5511.202202018.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  Long non-coding RNA (LncRNA) is closely related to the occurrence and development of various tumors. This study aimed to investigate the biological role and mechanism of LncRNA GATA3-AS1 in breast cancer progression. 

Methods  The expression level of LncRNA GATA3-AS1 in normal and breast cancer cells was de-tected via qRT-PCR, and the relationship between the expression of GATA3-AS1 and the different clinicopathological features of breast cancer was predicted using the bc-GenExMiner database. Subsequently we used the plasmid trans-fection experiment to obtain a breast cancer cell line with low expression of GATA3-AS1 and evaluated the function of GATA3-AS1 in the progression of breast cancer using Cell Counting Kit-8 (CCK8), Wound Healing, and Transwell ex-periments. Finally, the downstream target gene GATA3 of GATA3-AS1 was predicted by online databases (such as starBase), and the correlation between the proteins expressed by GATA3-AS1 and its protein encoding gene GATA3 was verified by Western blot assay. 

Results  GATA3-AS1 was significantly overexpressed in breast cancer cell lines MDA-MB-231 and McF-7. Online analysis using the BC-GenexMINER database showed that the expression of GA-TA3-AS1 was higher in breast cancer patients who were: older than 51 years, human epidermal growth factor receptor 2-negative (HER2-), estrogen receptor-positive (ER+), progesterone receptor-positive (PR+), and hormone receptor A positive (Luminal A). GATA3-AS1 expression was also significantly negatively correlated with the overall survival of patients with breast cancer. In vitro experiments showed that silencing GATA3-AS1 significantly reduced the prolifer-ation and migration of breast cancer cell lines MDA-MB-231 and McF-7. Besides, GATA3 protein level was significant-ly increased after knocking down GATA3-AS1 in MDA-MB-231 and McF-7 cell lines, suggesting that the oncogenic ef-fect of GATA3-AS1 may be mediated by the expression of its protein-coding gene GATA3. 

Conclusion  LncRNA GA-TA3-AS1 may promote the proliferation and migration of breast cancer cells by regulating the expression of GATA3.

Full-text
Please download the PDF version to read the full text: download
References

1.Sung H, Ferlay J, Siegel R, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.

2.国家肿瘤质控中心乳腺癌专家委员会, 中国抗癌协会乳腺癌专业委员会, 中国抗癌协会肿瘤药物临床研究专业委员会. 中国晚期乳腺癌规范诊疗指南(2020版)[J]. 中华肿瘤杂志, 2020, 42(10): 781-797. [Breast Cancer Expert Committee of National Cancer Quality Control Center,  Breast Cancer Expert Committee of China Anti-Cancer Association,  Cancer Drug Clinical Research Com-mittee of China Anti-Cancer Association. Guidelines for clinical diagnosis and treatment of advanced breast cancer in China (2020 Edition)[J]. Chinese Journal of Oncology, 2020, 42(10): 781-797.] DOI: 10.3760/cma.j.cn 112152-20200817-00747.

3.Anastasiadi Z, Lianos GD, Ignatiadou E, et al. Breast cancer in young women: an overview[J]. Updates Surg, 2017, 69(3): 313-317. DOI: 10.1007/s13304-017-0424-1.

4.Rinn JL, Chang HY. Genome regulation by long noncoding RNAs[J]. Annu Rev Biochem, 2012, 81: 145-166. DOI: 10.1146/annurev-biochem-051410-092902.

5.Atianand MK, Caffrey DR, Fitzgerald KA. Immunobiology of long noncoding RNAs[J]. Annu Rev Immunol, 2017, 26(35): 177-198. DOI: 10.1146/annurev-immunol- 041015-055 459.

6.Yang F, Fang E, Mei H, et al. Cis-Acting circ-CTNNB1 promotes β-catenin signaling and cancer progression via DDX3-mediated transactivation of YY1[J]. Cancer Res, 2019, 79(3): 557-571. DOI: 10.1158/0008-5472.CAN-18-1559.

7.Wang Z, Yang B, Zhang M, et al. lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in can-cer[J]. Cancer Cell, 2018, 33(4): 706-720. DOI: 10.1016/j.ccell.2018.03.006.

8.Slack FJ, Chinnaiyan AM. The role of non-coding RNAs in oncology[J]. Cell, 2019, 179(5): 1033-1055. DOI: 10.1016/j.cell.2019.10.017.

9.Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs[J]. RNA Biol, 2013, 10(6): 925-933. DOI: 10.4161/rna.24604.

10.Wang Y, Dang Y, Liu J, et al. The function of homeobox genes and lncRNAs in cancer[J]. Oncol Lett, 2016, 12(3): 1635-1641. DOI: 10.3892/ol.2016.4901.

11.Zhang Z, Sun L, Zhang Y, et al. Long non-coding RNA FEZF1-AS1 promotes breast cancer stemness and tumorigenesis via targeting miR-30a/Nanog axis[J]. J Cell Physiol, 2018, 233(11): 8630-8638. DOI: 10.1002/jcp.26611.

12.Yuan SX, Tao QF, Wang J, et al. Antisense long non-coding RNA PCNA-AS1 promotes tu-mor growth by regulating proliferating cell nuclear antigen in hepatocellular carcinoma[J]. Cancer Lett, 2014, 349(1): 87-94. DOI: 10.1016/j.canlet.2014.03.029.

13.He J, Wu K, Guo C, et al. Long non-coding RNA AFAP1-AS1 plays an oncogenic role in promoting cell migration in non-small cell lung cancer[J]. Cell Mol Life Sci, 2018, 75(24): 4667-4681. DOI: 10.1007/s00018-018-2923-8.

14.Hu G, Tang Q, Sharma S, et al. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation[J]. Nat Immunol, 2013, 14(11): 1190-1198. DOI: 10.1038/ni.2712.

15.Luo X, Zhou N, Wang L, et al. Long noncoding RNA GATA3-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by suppression of PTEN, CDKN1A, and TP53[J]. Can J Gastroenterol Hepatol, 2019, 2019: 1389653. DOI: 10.1155/2019/1389653.

16.Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs[J]. Nucleic Acids Res, 2012, 40(14): 6391-6400. DOI: 10.1093/nar/gks296.

17.Zhang H, Cai K, Wang J, et al. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhib-its SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway[J]. Stem Cells, 2014, 32(11): 2858-2868. DOI: 10.1002/stem.1795.

18.Ma F, Liu X, Zhou S, et al. Long non-coding RNA FGF13-AS1 inhibits glycolysis and stem-ness properties of breast cancer cells through FGF13-AS1/IGF2BPs/Myc feedback loop[J]. Cancer Lett, 2019, 450: 63-75. DOI: 10.1016/j. canlet.

19.Yu W, Gius D, Onyango P, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA[J]. Nature, 2008, 451(7175): 202-206. DOI: 10.1038/nature 06468.

20.Zhang H, Nestor CE, Zhao S, et al. Profiling of human CD4+ T-cell subsets identifies the TH2-specific noncoding RNA GATA3-AS1[J]. J Allergy Clin Immunol, 2013, 132(4): 1005-1008. DOI: 10.1016/j.jaci.2013.05. 033.

21.Zhu YP, Bian XJ, Ye DW, et al. Long noncoding RNA expression signatures of bladder can-cer revealed by microarray[J]. Oncol Lett, 2014, 7(4): 1197-1202. DOI: 10.3892/ol.2014.1843.

22.Wu X, Sharp PA. Divergent transcription: a driving force for new gene origination[J]. Cell, 2013, 155(5): 990-996. DOI: 10.1016/j.cell.2013.10.048.

23.Gomez JA, Wapinski OL, Yang YW, et al. The NeST long ncRNA controls microbial suscep-tibility and epigenetic activation of the interferon-γ locus[J]. Cell, 2013, 152(4): 743-754. DOI: 10.1016/j.cell.2013.01.015.

24.Almada AE, Wu X, Kriz AJ, et al. Promoter directionality is controlled by U1 snRNP and polyadenylation signals[J]. Nature, 2013, 499(7458): 360-363. DOI: 10.1038/nature 12349.

25.Romano O, Miccio A. GATA factor transcriptional activity: insights from genome-wide binding profiles[J]. IUBMB Life, 2020, 72(1): 10-26. DOI: 10.1002/iub.2169.

26.Mehra R, Varambally S, Ding L, et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis[J]. Cancer Res, 2005, 65(24): 11259-11264. DOI: 10.1158/0008-5472.CAN-05-2495.

27.Ciocca V, Daskalakis C, Ciocca RM, et al. The significance of GATA3 expression in breast cancer: a 10-year follow-up study[J]. Hum Pathol, 2009, 40(4): 489-495. DOI: 10.1016/j.humpath.2008.09.010.

28.Kamel NA, Abdelzaher E, Elgebaly O, et al. Reduced expression of GATA3 predicts progres-sion in non-muscle invasive urothelial carcinoma of the urinary bladder[J]. J Histotechnol, 2020, 43(1): 21-28. DOI: 10.1080/01478885.2019.1667126.

29.Yin G, Liu Z, Wang Y, et al. ZNF503 accelerates aggressiveness of hepatocellular carcinoma cells by down-regulation of GATA3 expression and regulated by microRNA-495[J]. Am J Transl Res, 2019, 11(6): 3426-3437. https://pubmed.ncbi.nlm.nih.gov/31312355/.

30.Gibbons HR, Shaginurova G, Kim LC, et al. Divergent lncRNA GATA3-AS1 Regulates GATA3 Transcription in T-Helper 2 Cells[J]. Front Immunol, 2018, 9: 2512. DOI: 10.3389/fimmu.2018.02512.

31.Kouros MH, Kim JW, Bechis SK, et al. GATA-3 and the regulation of the mammary luminal cell fate[J]. Curr Opin Cell Biol, 2008, 20(2): 164-170. DOI: 10.1016/j.ceb.2008. 02.003.

32.Eeckhoute J, Keeton EK, Lupien M, et al. Positive cross-regulatory loop ties GATA-3 to es-trogen receptor alpha expression in breast cancer[J]. Cancer Res, 2007, 67(13): 6477-6483. DOI: 10.1158/0008-5472.CAN-07-0746.

33.Theodorou V, Stark R, Menon S, et al. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility[J]. Genome Res, 2013, 23(1): 12-22. DOI: 10.1101/gr.139469.112.

34.Bai F, Zhang LH, Liu X, et al. GATA3 functions downstream of BRCA1 to suppress EMT in breast cancer[J]. Theranostics, 2021, 11(17): 8218-8233. DOI: 10.7150/thno.59280.

35.Na K, Woo HY, DO SI, et al. Combination of GATA3, SOX-10, and PAX8 in a comprehensive panel to diagnose breast cancer metastases[J]. In Vivo, 2022, 36(1): 473-481. DOI: 10.21873/invivo.12727.