Welcome to visit Zhongnan Medical Journal Press Series journal website!

Inflammatory factors and inflammatory bowel disease: a univariate and multivariate Mendelian randomized study

Published on Sep. 26, 2025Total Views: 24 timesTotal Downloads: 11 timesDownloadMobile

Author: WANG Xiaoling 1 ZHANG Huiling 1 ZHANG Kun 2

Affiliation: 1. The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China 2. Department of Anorectal, Linyi Traditional Chinese Medicine Hospital, Linyi 276002, Shandong Province, China

Keywords: Mendelian randomization Inflammatory bowel disease Crohn's disease Ulcerative colitis Inflammatory factors

DOI: 10.12173/j.issn.1004-5511.202410098

Reference: Wang XL, Zhang HL, Zhang K. Inflammatory factors and inflammatory bowel disease: a univariate and multivariate Mendelian randomized study[J]. Yixue Xinzhi Zazhi, 2025, 35(9): 1066-1073. DOI: 10.12173/j.issn.1004-5511.202410098. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the causal relationship between inflammatory factors and inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), using Mendelian randomization (MR).

Methods  Inflammatory factors data were obtained from the University of Bristol database and the GWAS Catalog database, and IBD data were obtained from the FinnGen database. Inverse-variance weighted was used as the primary analysis method, supplemented by weighted median estimator, weighted mode, and MR-Egger analysis methods. Sensitivity analyses such as heterogeneity and pleiotropy further validated the robustness of the results, multivariate Mendelian randomization (MVMR) analysis was performed to enhance the reliability of the final results.

Results  Forward MR analysis found that a total of 24 inflammatory factors were causally associated with IBD, while reverse MR analysis did not find a causal relationship between the two. MVMR analysis showed that AXIN1 and CD6 were positively correlated with IBD; IL10, CXCL5, and TRANCE were negatively correlated with UC, while IL-1α was positively correlated with UC; b-FGF, AXIN1, CD6, and IL-10Rα were positively correlated with CD, while TGF-β1 was negatively correlated with CD.

Conclusion  Some inflammatory factors have a causal relationship with IBD and may play a role in its pathogenesis.

Full-text
Please download the PDF version to read the full text: download
References

1.Bruner LP, White AM, Proksell S. Inflammatory bowel disease[J]. Prim Care, 2023, 50(3): 411-427. DOI: 10.1016/j.pop.2023.03.009.

2.Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(1): 56-66. DOI: 10.1038/s41575-020-00360-x.

3.Chauhan G, Rieder F. The pathogenesis of inflammatory bowel diseases[J]. Surg Clin North Am, 2025, 105(2): 201-215. DOI: 10.1016/j.suc.2024.10.008.

4.Singh N, Bernstein CN. Environmental risk factors for inflammatory bowel disease[J]. United European Gastroenterol J, 2022, 10(10): 1047-1053. DOI: 10.1002/ueg2.12319.

5.Piovani D, Danese S, Peyrin-Biroulet L, et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of Meta-analyses[J]. Gastroenterology, 2019, 157(3): 647-659. e4. DOI: 10.1053/j.gastro.2019.04.016.

6.Chen X, Zhang S, Wu X, et al. Inflammatory cytokines and oral lichen planus: a Mendelian randomization study[J]. Front Immunol, 2024, 15: 1332317. DOI: 10.3389/fimmu.2024.1332317.

7.Reza Lahimchi M, Eslami M, Yousefi B. Interleukin-35 and interleukin-37 anti-inflammatory effect on inflammatory bowel disease: application of non-coding RNAs in IBD therapy[J]. Int Immunopharmacol, 2023, 117: 109932. DOI: 10.1016/j.intimp.2023.109932.

8.Fonseca-Camarillo G, Furuzawa-Carballeda J, Yamamoto-Furusho JK. Interleukin 35 (IL-35) and IL-37: intestinal and peripheral expression by T and B regulatory cells in patients with inflammatory bowel disease[J]. Cytokine, 2015, 75(2): 389-402. DOI: 10.1016/j.cyto.2015.04.009.

9.Fang G, Kong F, Zhang H, et al. Association between inflammatory bowel disease and interleukins, chemokines: a two-sample bidirectional Mendelian randomization study[J]. Front Immunol, 2023, 14: 1168188. DOI: 10.3389/fimmu.2023.1168188.

10.Nemeth ZH, Bogdanovski DA, Barratt-Stopper P, et al. Crohn's disease and ulcerative colitis show unique cytokine profiles[J]. Cureus, 2017, 9(4): e1177. DOI: 10.7759/cureus.1177.

11.Singh UP, Singh NP, Murphy EA, et al. Chemokine and cytokine levels in inflammatory bowel disease patients[J]. Cytokine, 2016, 77: 44-49. DOI: 10.1016/j.cyto.2015.10.008.

12.Qin C, Yu Q, Deng Z, et al. Causal relationship between the immune cells and ankylosing spondylitis: univariable, bidirectional, and multivariable Mendelian randomization[J]. Front Immunol, 2024, 15: 1345416. DOI: 10.3389/fimmu.2024.1345416.

13.Ahola-Olli AV, Würtz P, Havulinna AS, et al. Genome-wide association study identifies 27 loci influencing concentrations of circulating cytokines and growth factors[J]. Am J Hum Genet, 2017, 100(1): 40-50. DOI: 10.1016/j.ajhg.2016.11.007.

14.Zhao JH, Stacey D, Eriksson N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9): 1540-1551. DOI: 10.1038/s41590-023-01588-w.

15.Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-518. DOI: 10.1038/s41586-022-05473-8.

16.Lin SH, Brown DW, Machiela MJ. LDtrait: an online tool for identifying published phenotype associations in linkage disequilibrium[J]. Cancer Res, 2020, 80(16): 3443-3446. DOI: 10.1158/0008-5472.CAN-20-0985.

17.Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J]. Int J Epidemiol, 2011, 40(3): 740-752. DOI: 10.1093/ije/dyq151.

18.Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. DOI: 10.1007/s10654-017-0255-x.

19.Ong JS, MacGregor S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner's perspective[J]. Genet Epidemiol, 2019, 43(6): 609-616. DOI: 10.1002/gepi.22207.

20.Luo S, Li W, Li Q, et al. Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study[J]. Front Cell Infect Microbiol, 2023, 13: 1160993. DOI: 10.3389/fcimb.2023.1160993.

21.Sanderson E. Multivariable Mendelian randomization and mediation[J]. Cold Spring Harb Perspect Med, 2021, 11(2): a038984. DOI: 10.1101/cshperspect.a038984.

22.Casadó-Llombart S, Velasco-de Andrés M, Català C, et al. Experimental and genetic evidence for the impact of CD5 and CD6 expression and variation in inflammatory bowel disease[J]. Front Immunol, 2022, 13: 966184. DOI: 10.3389/fimmu.2022.966184.

23.Zheng M, Zhang L, Yu H, et al. Genetic polymorphisms of cell adhesion molecules in Behcet's disease in a Chinese Han population[J]. Sci Rep, 2016, 6: 24974. DOI: 10.1038/srep24974.

24.Consuegra-Fernández M, Julià M, Martínez-Florensa M, et al. Genetic and experimental evidence for the involvement of the CD6 lymphocyte receptor in psoriasis[J]. Cell Mol Immunol, 2018, 15(10): 898-906. DOI: 10.1038/cmi.2017.119.

25.Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor[J]. J Exp Med, 1997, 186(12): 2075-2080. DOI: 10.1084/jem.186.12.2075.

26.Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J]. Cell, 1998, 93(2): 165-176. DOI: 10.1016/s0092-8674(00)81569-x.

27.Hanada R, Hanada T, Sigl V, et al. RANKL/RANK-beyond bones[J]. J Mol Med (Berl), 2011, 89(7): 647-656. DOI: 10.1007/s00109-011-0749-z.

28.Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12[J]. Cell Mol Immunol, 2018, 15(4): 299-311. DOI: 10.1038/cmi.2017.107.

29.Werner L, Guzner-Gur H, Dotan I. Involvement of CXCR4/CXCR7/CXCL12 interactions in inflammatory bowel disease[J]. Theranostics, 2013, 3(1): 40-46. DOI: 10.7150/thno.5135.

30.Xia XM, Wang FY, Zhou J, et al. CXCR4 antagonist AMD3100 modulates claudin expression and intestinal barrier function in experimental colitis[J]. PLoS One, 2011, 6(11): e27282. DOI: 10.1371/journal.pone.0027282.

31.Liu B, Qian Y, Li Y, et al. Circulating levels of cytokines and risk of inflammatory bowel disease: evidence from genetic data[J]. Front Immunol, 2023, 14: 1310086. DOI: 10.3389/fimmu.2023.1310086.

32.Caruso C. MIG in Crohn's disease[J]. Clin Ter, 2019, 170(3): e206-e210. DOI: 10.7417/ct.2019.2134.

33.Chen Z, Kim SJ, Essani AB, et al. Characterising the expression and function of CCL28 and its corresponding receptor, CCR10, in RA pathogenesis[J]. Ann Rheum Dis, 2015, 74(10): 1898-1906. DOI: 10.1136/annrheumdis-2013-204530.

34.Medina-Contreras O, Geem D, Laur O, et al. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice[J]. J Clin Invest, 2011, 121(12): 4787-4795. DOI: 10.1172/jci59150.

35.Xue H, Luo Q, Chen J, et al. Assessing the causal relationship between genetically determined inflammatory cytokines and Parkinson's disease risk: a bidirectional two-sample Mendelian randomization study[J]. J Immunol Res, 2024, 2024: 9069870. DOI: 10.1155/2024/9069870.