欢迎访问中南医学期刊社系列期刊网站!

  • 中国科技核心期刊

    中国科技论文统计源期刊

    DOAJ数据库收录期刊

    CAS数据库收录期刊

    RCCSE中国核心学术期刊

    Google Scholar索引期刊

    百度学术索引期刊

  • 湖北省科协科技创新源泉工程优秀科技期刊

    湖北省期刊发展扶持资金资助期刊

    《中国学术期刊影响因子年报》统计源期刊

    CACJ中国应用型核心期刊

    中国核心期刊(遴选)数据库收录期刊

    中国学术期刊网络出版总库收录期刊

    中文科技期刊数据库收录期刊

Toll样受体在钙化性主动脉瓣疾病中的研究进展

发表时间:2024年03月02日阅读量:1059次下载量:1512次下载手机版

作者: 任一鸣 1, 2, 3 张晋辉 1, 3 王聪聪 1, 3 王天堃 1, 3 任学群 1 周建良 2

作者单位: 1. 河南大学淮河医院普外科(河南开封 475000) 2. 武汉大学中南医院心血管外科(武汉 430071) 3. 武汉大学中南医院循证与转化医学中心(武汉 430071)

关键词: 钙化性主动脉瓣疾病 Toll样受体 炎症反应

DOI: 10.12173/j.issn.1004-5511.202312035

基金项目: 基金项目: 国家自然科学基金面上项目(82270382);武汉市英才产业领军人才项目(WHYCCYLK2021002)

引用格式:任一鸣, 张晋辉, 王聪聪, 王天堃,任学群,周建良. Toll样受体在钙化性主动脉瓣疾病中的研究进展[J]. 医学新知, 2024, 34(2): 217-225. DOI: 10.12173/j.issn.1004-5511.202312035.

Ren YM, Zhang JH, Wang CC, Wang TK, Ren XQ, Zhou JL. Research progress of Toll-like receptors in calcified aortic valve disease[J]. Yixue Xinzhi Zazhi, 2024, 34(2): 217-225. DOI: 10.12173/j.issn.1004-5511.202312035.[Article in Chinese]

摘要|Abstract

钙化性主动脉瓣疾病(calcified aortic valve disease,CAVD)既往被认为是由衰老相关的退行性病变和被动的钙盐沉积所导致,近年来发现CAVD实际是一个主动的病理过程,其发病机制尚未阐明。在CAVD的发展过程中,先天免疫反应和适应性免疫反应均被激活,越来越多的证据表明,炎症在疾病的起始和发展阶段起着核心作用,其中Toll样受体(Toll-like receptors,TLRs)的功能尤其重要。TLRs通过识别病原体和组织损伤后释放的宿主衍生分子,充当先天免疫系统的哨兵,在控制感染和维持组织稳态中发挥关键作用。本文通过概述目前关于TLRs信号传导与CAVD发病机制中炎症和钙化重塑之间的关系,以期为CAVD的治疗提供新的靶点和策略。

全文|Full-text

心脏瓣膜病是最常见的心血管疾病之一,风湿性心脏病和老年退行性心脏瓣膜病是最常见的后天性发病因素。在过去20年中,风湿性心脏病的死亡率保持稳定,而钙化性主动脉瓣狭窄的死亡率逐步上升[1]。钙化性主动脉瓣疾病(calcified aortic valve disease, CAVD)是指从主动脉瓣增厚和钙化而无血流动力学的变化,到主动脉瓣狭窄而引起左室流出道梗阻的一系列变化过程。临床现阶段唯一的治疗手段仍是主动脉瓣置换术,依然缺乏可以阻止或延缓CAVD进展的药物[2-3],因此,探明CAVD的发生发展机制,寻找药物治疗靶点是该领域亟待解决的重点问题。

既往研究认为CAVD是一个与衰老相关的、被动的、退行性的过程。而随着近年来研究发现,CAVD实际是一个主动的、多因素参与的、可积极调节的生物学过程[4-5],类似于血管动脉粥样硬化,涉及内皮功能活动障碍、炎症反应、脂质浸润、细胞外基质重塑和成骨分化等过程[6-7]。越来越多的证据表明,炎症反应是CAVD的重要环节,不仅参与CAVD的起始步骤,还通过调节骨形成相关的信号通路促进钙化形成[8],其中Toll样受体(Toll-like receptors,TLRs)的功能尤为重要。TLRs是免疫模式识别受体家族成员之一,可以通过识别外源性病原体相关分子模式(pathogen-associated molecular patterns,PAMPs)和内源细胞损伤相关分子模式(damage-associated molecular patterns,DAMPs)来激活一系列先天免疫反应[9]。本文就近年来TLRs在CAVD的机制进行综述,旨在为CAVD进一步的研究和治疗提供科学依据。

1 Toll样受体概述

1.1 Toll样受体的结构、适配器和配体

TLRs是一种Ⅰ型跨膜蛋白,由细胞外区、跨膜区和细胞质区3个部分组成。TLRs的细胞外区通过触发先天免疫反应在细胞外病原体攻击和组织损伤过程中起着关键作用;跨膜区决定了TLRs的亚细胞定位[10];TLRs的细胞质区域被称为Toll/IL-1受体(Toll/interleukin receptor,TIR)结构域,它在信号转导过程中特异性地募集下游接头[11]。最近的研究报道了5种含有TIR结构域的适配器,分别为髓样分化因子88(myeloid differentiation factor 88,MyD88)、诱导IFN-β的含TIR结构域的转接蛋白(TIR domain-containing adaptor-inducing IFN-β,TRIF)、MyD88-转接体样/TIR-相关蛋白(MyD88 adaptor-like/TIR associated protein,MAL/TIRAP)、Toll受体相关分子(Toll receptor associated molecule,TRAM)以及SARM(sterile-α and HEAT/Armadillo motifs)[12]。

病原体释放的抗原被称为PAMP,主要包括脂多糖(lipopolysaccharide,LPS)、肽聚糖(peptidoglycan,PGN)、单链RNA(single-stranded RNA,ssRNA)、双链RNA(double-stranded RNA,dsRNA)等[13]。根据其细胞位置和特定配体,识别PAMP的TLRs可分为两类[14]。其中一种表达于细胞表面,识别微生物的膜成分(TLR1、TLR2、TLR4、TLR5、TLR6和TLR11);另一种在细胞内囊泡上表达并识别微生物核酸(TLR3、TLR7、TLR8和TLR9)[15]。DAMPs是从受损或垂死的细胞中产生释放的各种细胞内分子,主要包含HMGB-1、三磷酸腺苷(ATP)、线粒体DNA和RNA等[16]。DAMPs通过直接促进炎症介质的释放,调节先天性和获得性免疫的发展方向,影响严重反应的发展,诱导免疫细胞向炎症部位迁移,增加炎症细胞黏附和浸润能力来调节炎症反应[17]。

1.2 Toll样受体的信号通路

TLRs介导的信号通路错综复杂。目前,TLRs有两条主要的信号通路,即MyD88依赖性通路和TRIF依赖性通路,启动免疫反应最常见的信号通路是MyD88依赖性通路[18]。

除TLR3以外的所有TLRs都可以通过MyD88依赖性信号通路引发免疫反应。TLRs和MyD88的结合刺激了IRAK家族成员(IRAK1、IRAK2、IRAK4等)的招募,其中IRAK4是极其重要的。IRAK4是一种促进IRAK1磷酸化的激酶,在下游信号转导中募集磷酸化的IRAK1和TRAF6[19]。TRAF6与适配器形成复合物,通过MAPK激酶激酶(MAP3K)通路激活TAK1,导致I-κB激酶(IKK)复合物和P38磷酸化,激活NF-κB通路,从而诱导IL-1β和TNF-α等炎症因子的表达[20]。

TLR3和TLR4可以通过TRIF依赖性通路调节信号转导,TLR3可直接连接到TRIF,而TLR4通过TRAM连接到TRIF。TRIF激活TANK结合激酶1(TBK1)后,IRF3被激活,之后转移到细胞核中,并调节IFN-β的合成。同样,TRIF依赖性通路也可以通过激活TRAF6向NF-кB通路的转化来诱导炎症[21]。

2 钙化性主动脉瓣疾病的病理生理学概述

主动脉瓣是一个半月状结构,在促进血液从左心室到主动脉的单向流动中发挥重要作用。主动脉瓣的组织结构通常分为纤维层、海绵层和心室层。纤维层和心室层是最外层,分别面向主动脉和左心室。纤维层主要含有胶原纤维,而心室层具有高含量的弹性纤维,并且由主动脉瓣膜间质细胞(aortic valve interstitial cell,AVIC)填充。中心海绵层的糖胺聚糖含量较高,在主动脉瓣的生物力学特性中发挥重要作用,在心动周期期间吸收部分机械负荷[22]。主动脉瓣被瓣膜内皮细胞(valve endothelial cell,VEC)覆盖,研究表明主动脉瓣和血管内皮具有不同的生物学特性,这可能会影响CAVD的发展[23]。

对从手术中获得的人钙化主动脉瓣进行微观分析,结果揭示了CAVD的一些重要关键特征。首先,脂质渗透到矿化区附近的瓣膜组织中;其次,在一些瓣膜中存在致密的炎性浸润,并观察到氧化脂质和微钙化[24];最后,在约15%的微钙化中观察到成骨化生。Coté等研究发现在285个钙化主动脉瓣中,28%的瓣膜存在致密的慢性炎性浸润,且与骨化生、新血管形成和更高水平的组织重塑相关[25]。此外,钙化主动脉瓣中炎性细胞密度与主动脉瓣狭窄进展速度加快相关,故CAVD的发生发展过程与炎症可能有重要关系。

3 Toll样受体在钙化性主动脉瓣疾病中的作用机制

自1997年起,陆续有研究在主动脉瓣狭窄的瓣叶上检测到了肺炎衣原体和与慢性牙周感染相关的细菌等病原微生物[26-28]。Cohen等研究发现,在复发性低度心内膜炎的家兔模型中接种口腔细菌可导致主动脉瓣钙化[29]。然而,内皮损伤后短暂的菌血症导致细胞因子反应的潜在致病机制仍未被探明。

先天性受体被认为是病原体衍生分子、炎症和CAVD之间的分子枢纽[30]。TLRs是进化上保守的模式识别受体,是先天免疫和炎症之间的重要中介。在主动脉瓣中,TLRs不仅存在于浸润免疫细胞中,而且存在于固有细胞中,其中TLR4是最丰富的亚型[31]。近年来CAVD与TLRs相关的通路机制进展见图1。

3.1 TLR2在钙化性主动脉瓣疾病中的作用

最先被发现在主动脉瓣组织和AVIC中表达的TLRs家族成员是TLR4和TLR2,它们在钙化的瓣膜中上调[31]。此外,与肺动脉瓣、二尖瓣或三尖瓣相比,主动脉瓣组织和AVIC中表达更多的TLR4和TLR2且对其激动剂的促炎促成骨反应更大[32-33]。

TLR2可以与外源性配体如PGN、脂蛋白等与PAMPs结合,激发炎症反应,因此实验中常用PGN和Pam3CSK4等为TLR2激动剂。TLR2和TLR4经常共同作为研究对象并通过适配器MyD88和NF-κB通路介导它们的作用[31, 34-35]。Song等在研究中发现双糖链蛋白聚糖(biglycan,BGN)通过TLR2和TLR4诱导人AVIC中细胞间黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1)和单核细胞趋化蛋白-1(monocyte chemotactic protein-1,MCP-1)的表达,并需要激活ERK1/2通路,但TLR2的敲低和对炎症反应的抑制作用比TLR4阻断和敲低更明显[36]。Lee等发现IL-1受体拮抗剂能减少TLR2刺激下AVIC中骨形态发生蛋白-2(bone morphogenetic protein-2,BMP2)的产生,而在TLR4的刺激下未发生此作用[37],表明IL-1受体拮抗剂只针对TLR2发挥抗炎作用(图1)。这些研究都突出了TLR2在CAVD中发挥重要作用,且在某些方面的作用甚至比TLR4更为重要。Rabkin等的研究表明在AVIC中炎症因子通过TLR2作用使p38 MAPK去磷酸化而对主动脉瓣产生影响,并排除了其通过血管紧张素Ⅱ或过氧亚硝酸盐的介导作用[38](图1)。单核细胞浸润和主动脉瓣中单核细胞/巨噬细胞积聚是进行性CAVD的特征[39]。Zhang等将低浓度TLR2激活剂Pam3CSK4加入AVIC和单核细胞共培养体系中,发现仅在使用Pam3CSK4刺激单核细胞后的上清液培养或与其共培养时,AVIC产生的ICAM-1和血管细胞黏附因子-1(vascular cell adhesion molecule-1,VCAM-1)显著增加,且肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)水平也明显升高;AVIC中TLR2的抑制或敲低显著降低了Pam3CSK4刺激单核细胞诱导的ICAM-1和VCAM-1的表达,中和TNF-α也能显示同样作用,表明单核细胞通过旁分泌上调TLR2水平来增强AVIC的炎症反应[40](图1)。

3.2 TLR3在钙化性主动脉瓣疾病中的作用

TLR3配体dsRNA存在于病毒中,也可以在正链RNA病毒、dsRNA病毒和DNA病毒的复制下产生,内源性来源可能是组织损伤或坏死[41]。López等人使用poly(I:C)模拟dsRNA效应,首次报道了TLR3介导的人AVIC的钙化[35]。Zhan等证实了dsRNA介导的炎症介质和促成骨活性的上调,并通过基因沉默和中和抗体进一步证明了非经典途径TLR3-TRIF以及NF-κB通路和ERK通路的参与[34, 42]。Parra-Izquierdo等还发现了JAK/STAT信号转导介导dsRNA触发主动脉瓣的炎症、细胞凋亡和钙化,以及I型IFN也激活了AVIC中的STAT1和NF-κB通路,而使用JAK抑制剂鲁索替尼或Ⅰ型干扰素受体阻断抗体可以阻止这种情况的发生[43](图1)。Gollmann-Tepeköylü等以APOE缺陷小鼠和特异性斑马鱼为研究模型,通过体内实验验证了BGN-TLR3-IFNAR1轴在CAVD中的作用,并通过两个大规模队列研究证实了CAVD与BGN-TLR3-IFN通路相关基因遗传变异的相关性[44]。TLRs在CAVD中的体外研究大部分都聚焦于AVIC上,而Niepmann等的研究也关注了VEC在CAVD中发生的变化,研究发现与正常小鼠相比,TLR3基因敲除小鼠在钢丝损伤主动脉瓣后的钙化发生率显著降低,证实了内源性TLR3配体在主动脉瓣狭窄病理学中的作用,还观察到TLR3的激活也会损伤小鼠的内皮功能。TLR3抑制剂C4a不仅阻止了AVICs中炎性细胞因子和成骨标志物的上调,以及VECs中内皮间充质转化的上调,而且在体内显著消除了主动脉瓣狭窄的发生[45](图1)。

3.3 TLR4在钙化性主动脉瓣疾病中的作用

TLR4是AVIC中表达最高的TLRs[35]。研究发现成人比儿童AVIC对TLR4刺激表现出更强的炎症和成骨反应[46]。多研究表明TLR4通路在CAVD的发病机制中起促进作用,减少TLR4的表达可以逆转AS的进展[36, 47]。Deng等猜测TLR4介导作用在儿童中由于涉及STAT3激活的保护机制而被阻止,但在成人中不存在这种保护机制[46]。后续研究发现TLR4的外源性刺激剂LPS可以促进AVIC成骨标志物的表达,雷帕霉素可以通过上调STAT3的表达而抑制这种反应[48](图1)。Parra等也发现LPS和IFN联合缺氧诱导因子1α(HIF-1α)时,STAT-1也发挥重要作用[49]。这些研究均表明STAT相关通路在CAVD发展过程中的重要作用。Yao等发现LPS可以诱导TLR4依赖性NT3的产生,这种作用通过抑制Akt和ERK1/2通路而被消除[50],Jarrett等也证实了LPS刺激AVIC纤维化依赖Wnt信号通路的介导[51](图1)。

  • 图1 Toll样受体在钙化性主动脉瓣疾病中作用机制图
    Figure1.Mechanism diagram of Toll-like receptors in CAVD
    注:AVIC胞膜表面受体TLR2/4-MyD88刺激导致NF-κB和MAPK等通路活化,诱导炎症介质,促进AVIC成骨分化;AVIC和AVEC溶酶体内TLR3-TRIF刺激触发JAK/STAT信号传导,促进AVIC炎症和成骨介质的上调以及AVEC的内皮间充质转化;瓣膜内单核细胞也可通过TLR2途径促进炎症介质释放,加剧AVIC的炎症;巨噬细胞内TLR7受刺激后分泌IL-10可缓解AVIC的炎症进程。AVIC,主动脉瓣膜间质细胞;AVEC,主动脉瓣膜内皮细胞;dsRNA,双链RNA;ssRNA,单链RNA;PAMP,外源性病原体相关分子模式;DAMP,内源细胞损伤相关分子模式;该图片使用Figdraw绘制。

还有研究描述了与CAVD发病机制相关的几种DAMP,它们都能通过TLR4介导其作用。BGN是一种广泛分布于组织中的小分子蛋白聚糖,在病理条件下大量产生,在CAVD中也大量表达[52]。可溶性BGN通过TLR2和TLR4诱导脂质修饰酶和细胞因子表达,在AVIC中通过TLRs途径充当促炎诱导剂[52-53]。Song等研究发现BGN介导AVIC成骨分化,以BMP-2和转化生长因子-β1(TGF-β1)为分子介质,其中以TLR4依赖性方式上调TGF-β1,而TLR2作用较小[53]。HMGB1是一种调节性核蛋白,当分泌到细胞外时,其充当促炎细胞因子[54]。目前已在CAVD患者体内和动物模型中发现了HMGB1,且其水平在CAVD患者组织和血浆中增加[55],并且可以在从患病瓣膜中分离的内皮细胞和间质细胞的分泌颗粒中检测到[56]。Wang等还证明重组HMGB1通过增加人AVIC中的成骨标志物和钙沉积而具有促成骨活性[57]。此外,Shen等的研究使TLR4及其通路NF-κB和JNK的作用在体外和体内得到验证,沉默或TLR4缺陷可使HMGB1促成骨活性显著降低[58]。Matrilin-2是一种可在不同组织中表达的细胞外蛋白,在人主动脉瓣的钙化结节中积累[59]。Matrilin-2通过AVIC中的TLR2/4增强成骨活性,且需要NF-κB转录因子家族及NFATc1的调节[60]。

3.4 TLR7在钙化性主动脉瓣疾病中的作用

TLR7属于细胞内Toll样受体组,位于内溶酶体中[61]。到目前为止,已鉴定出的TLR7配体是ssRNA和咪唑喹啉衍生物。TLR7是TLRs中表达最低的TLR之一[62]。Karadimou等发现主动脉瓣组织中TLR7与M2巨噬细胞标志物mRNA有相关性,TLR7也与主动脉瓣中的M2型巨噬细胞亚群共定位,用TLR7配体刺激体外瓣膜组织导致免疫调节细胞因子IL-10的分泌,但提取原代巨噬细胞和AVIC后再用TLR7配体分别刺激后发现仅有巨噬细胞的上清液中IL-10的释放量增加,而AVIC中未检测到反应,都表明主动脉瓣中M2巨噬细胞亚群TLR7的激活与减轻主动脉瓣炎症可能相关[63](图1)。

4 结语

综上,TLRs与CAVD的病程密切相关,其作用机制主要与通过MyD88依赖信号通路以及TRIF依赖性信号通路诱导炎症反应引起炎症因子、基质胶质纤维蛋白的增加、AVIC成骨分化、单核细胞的促进协同等作用有关。然而研究使用PAMP作为TLRs激动剂时并未检测到主动脉瓣中是否有相应的病原体及其衍生物定植,未来可由此方面开展深入研究。牙周炎相关病原体是最早在主动脉瓣中被检测到的病原体之一[27],近些年越来越多的研究在心脏瓣膜样本中发现了不同种类的口腔细菌[64-66],但目前仅在家兔模型中验证过口腔细菌的接种可导致主动脉瓣钙化。Neculae等人在综述中假设了口腔生态失调与心脏瓣膜病的潜在联系,提及其可能涉及TLRs相关通路[67],但仍需相关实验在组织、细胞、动物和类器官模型等层面上进行验证与探索。

另外,由于TLRs分型较多,仍有部分TLRs的功能未被揭示,未来的研究也需继续聚焦于多种TLRs功能的相互作用。随着研究的不断深入,对CAVD发生发展的作用认识也将逐步完善,通过干预、调节TLRs的表达有望成为CAVD防治新手段之一。但靶向这一途径的主要挑战将是最大限度地减少有害的先天免疫反应,同时保留适当的先天免疫防御机制。

参考文献|References

1.Coffey S, Roberts-Thomson R, Brown A, et al. Global epidemiology of valvular heart disease[J]. Nat Rev Cardiol, 2021, 18(12): 853-864. DOI: 10.1038/s41569-021-00570-z.

2.Otto CM, Prendergast B. Aortic-valve stenosis-from patients at risk to severe valve obstruction[J]. N Engl J Med, 2014, 371(8): 744-756. DOI: 10.1056/NEJMra1313875.

3.Kronenberg F. Aortic valve stenosis: the long and winding road[J]. Eur Heart J, 2021, 42(22): 2212-2214. DOI: 10.1093/eurheartj/ehaa1069.

4.O'Brien KD. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more)[J]. Arterioscler Thromb Vasc Biol, 2006, 26(8): 1721-1728. DOI: 10.1161/01.ATV.0000227513.13697.ac.

5.Hanna L, Armour C, Xu XY, et al. The haemodynamic and pathophysiological mechanisms of calcific aortic valve disease[J]. Biomedicines, 2022, 10(6):1317. DOI: 10.3390/biomedicines10061317.

6.Shu L, Yuan Z, Li F, et al. Oxidative stress and valvular endothelial cells in aortic valve calcification[J]. Biomed Pharmacother, 2023, 163: 114775. DOI: 10.1016/j.biopha.2023.114775.

7.Pasipoularides A. Calcific aortic valve disease: part 1-molecular pathogenetic aspects, hemodynamics, and adaptive feedbacks[J]. J Cardiovasc Transl Res, 2016, 9(2): 102-118. DOI: 10.1007/s12265-016-9679-z.

8.Cho KI, Sakuma I, Sohn IS, et al. Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease[J]. Atherosclerosis, 2018, 277: 60-65. DOI: 10.1016/j.atherosclerosis.2018.08.029.

9.Lim KH, Staudt LM. Toll-like receptor signaling [J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a011247. DOI: 10.1101/cshperspect.a011247.

10.Jin MS, Lee JO. Structures of the Toll-like receptor family and its ligand complexes[J]. Immunity, 2008, 29(2): 182-191. DOI: 10.1016/j.immuni.2008.07.007.

11.Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development[J]. Development, 2018, 145(9):dev156018. DOI: 10.1242/dev.156018.

12.Wang L, Yu K, Zhang X, et al. Dual functional roles of the MyD88 signaling in colorectal cancer development[J]. Biomed Pharmacother, 2018, 107: 177-184. DOI: 10.1016/j.biopha.2018.07.139.

13.Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: signal os that spur autophagy and immunity[J]. Immunol Rev, 2012, 249(1): 158-175. DOI: 10.1111/j.1600-065X.2012.01146.x.

14.Vijay K. Toll-like receptors in immunity and inflammatory diseases: past, present, and future [J]. Int Immunopharmacol, 2018, 59: 391-412. DOI: 10.1016/j.intimp.2018.03.002.

15.Salvador B, Arranz A, Francisco S, et al. Modulation of endothelial function by Toll like receptors [J]. Pharmacol Res, 2016, 108: 46-56. DOI: 10.1016/j.phrs.2016.03.038.

16.Gong T, Liu L, Jiang W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol, 2020, 20(2): 95-112. DOI: 10.1038/s41577-019-0215-7.

17.Huang J, Xie Y, Sun X, et al. DAMPs, ageing, and cancer: the 'DAMP Hypothesis'[J]. Ageing Res Rev, 2015, 24(Pt A): 3-16. DOI: 10.1016/j.arr.2014.10.004.

18.Kawai T, Akira S. TLR signaling[J]. Semin Immunol, 2007, 19(1): 24-32. DOI: 10.1016/j.smim.2006.12.004.

19.Pereira M, Durso DF, Bryant CE, et al. The IRAK4 scaffold integrates TLR4-driven TRIF and MyD88 signaling pathways[J]. Cell Rep, 2022, 40(7): 111225. DOI: 10.1016/j.celrep.2022.111225.

20.Chen WF, Shih YH, Liu HC, et al. 6-methoxyflavone suppresses neuroinflammation in lipopolysaccharide- stimulated microglia through the inhibition of TLR4/MyD88/p38 MAPK/NF-κB dependent pathways and the activation of HO-1/NQO-1 signaling[J]. Phytomedicine, 2022, 99: 154025. DOI: 10.1016/j.phymed.2022.154025.

21.Leulier F, Lemaitre B. Toll-like receptors-taking an evolutionary approach [J]. Nat Rev Genet, 2008, 9(3): 165-178. DOI: 10.1038/nrg2303.

22.Chen JH, Simmons CA. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues[J]. Circ Res, 2011, 108(12): 1510-1524. DOI: 10.1161/circresaha.110.234237.

23.Davies PF, Passerini AG, Simmons CA. Aortic valve: turning over a new leaf(let) in endothelial phenotypic heterogeneity[J]. Arterioscler Thromb Vasc Biol, 2004, 24(8): 1331-1333. DOI: 10.1161/01.ATV.0000130659.89433.c1.

24.Mohty D, Pibarot P, Després JP, et al. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis[J]. Arterioscler Thromb Vasc Biol, 2008, 28(1): 187-193. DOI: 10.1161/atvbaha.107.154989.

25.Coté N, Mahmut A, Bosse Y, et al. Inflammation is associated with the remodeling of calcific aortic valve disease[J]. Inflammation, 2013, 36(3): 573-581. DOI: 10.1007/s10753-012-9579-6.

26.Juvonen J, Laurila A, Juvonen T, et al. Detection of chlamydia pneumoniae in human nonrheumatic stenotic aortic valves[J]. J Am Coll Cardiol, 1997, 29(5): 1054-1059. DOI: 10.1016/s0735-1097(97)00003-x.

27.Nakano K, Inaba H, Nomura R, et al. Detection of cariogenic streptococcus mutans in extirpated heart valve and atheromatous plaque specimens[J]. Journal of Clinical Microbiology, 2006, 44(9): 3313-3317. DOI: 10.1128/jcm.00377-06.

28.Skowasch D, Tuleta I, Steinmetz M, et al. Pathogen burden in degenerative aortic valves is associated with inflammatory and immune reactions[J]. J Heart Valve Dis, 2009, 18(4): 411-417. https://pubmed.ncbi.nlm.nih.gov/19852145/.

29.Cohen DJ, Malave D, Ghidoni JJ, et al. Role of oral bacterial flora in calcific aortic stenosis: an animal model [J]. Ann Thorac Surg, 2004, 77(2): 537-543. DOI: 10.1016/s0003-4975(03)01454-1.

30.Mathieu P, Bouchareb R, Boulanger MC. Innate and adaptive immunity in calcific aortic valve disease[J]. J Immunol Res, 2015, 2015: 851945. DOI: 10.1155/2015/851945.

31.Meng X, Ao L, Song Y, et al. Expression of functional Toll-like receptors 2 and 4 in human aortic valve interstitial cells: potential roles in aortic valve inflammation and stenosis[J]. Am J Physiol Cell Physiol, 2008, 294(1): C29-35. DOI: 10.1152/ajpcell.00137.2007.

32.Yang X, Fullerton DA, Su X, et al. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2[J]. J Am Coll Cardiol, 2009, 53(6): 491-500. DOI: 10.1016/j.jacc.2008.09.052.

33.Venardos N, Nadlonek NA, Zhan Q, et al. Aortic valve calcification is mediated by a differential response of aortic valve interstitial cells to inflammation[J]. J Surg Res, 2014, 190(1): 1-8. DOI: 10.1016/j.jss.2014.03.051.

34.Zhan Q, Zeng Q, Song R, et al. IL-37 suppresses MyD88-mediated inflammatory responses in human aortic valve interstitial cells[J]. Mol Med, 2017, 23: 83-91. DOI: 10.2119/molmed.2017.00022.

35.López J, Fernández-Pisonero I, Dueñas AI, et al. Viral and bacterial patterns induce TLR-mediated sustained inflammation and calcification in aortic valve interstitial cells[J]. Int J Cardiol, 2012, 158(1): 18-25. DOI: 10.1016/j.ijcard.2010.12.089.

36.Song R, Ao L, Zhao KS, et al. Soluble biglycan induces the production of ICAM-1 and MCP-1 in human aortic valve interstitial cells through TLR2/4 and the ERK1/2 pathway[J]. Inflamm Res, 2014, 63(9): 703-710. DOI: 10.1007/s00011-014-0743-3.

37.Lee JH, Meng X, Weyant MJ, et al. Stenotic aortic valves have dysfunctional mechanisms of anti-inflammation: implications for aortic stenosis[J]. J Thorac Cardiovasc Surg, 2011, 141(2): 481-486. DOI: 10.1016/j.jtcvs.2010.11.002.

38.Rabkin SW, Lodhia P, Luong MW. P38 MAP kinase in valve interstitial cells is activated by angiotensin II or nitric oxide/peroxynitrite, but reduced by Toll-like receptor-2 stimulation[J]. J Heart Valve Dis, 2009, 18(6): 653-661. https://pubmed.ncbi.nlm.nih.gov/20099714/.

39.Li G, Qiao W, Zhang W, et al. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification[J]. J Thorac Cardiovasc Surg, 2017, 153(6): 1318-1327.e1. DOI: 10.1016/j.jtcvs.2017.01.052.

40.Zhang P, The E, Nedumaran B, et al. Monocytes enhance the inflammatory response to TLR2 stimulation in aortic valve interstitial cells through paracrine up-regulation of TLR2 level[J]. Int J Biol Sci, 2020, 16(15): 3062-3074. DOI: 10.7150/ijbs.49332.

41.Gantier MP, Williams BR. The response of mammalian cells to double-stranded RNA[J]. Cytokine Growth Factor Rev, 2007, 18(5-6): 363-371. DOI: 10.1016/j.cytogfr.2007.06.016.

42.Zhan Q, Song R, Zeng Q, et al. Activation of TLR3 induces osteogenic responses in human aortic valve interstitial cells through the NF-κB and ERK1/2 pathways[J]. Int J Biol Sci, 2015, 11(4): 482-493. DOI: 10.7150/ijbs.10905.

43.Parra-Izquierdo I, Sánchez-Bayuela T, Castaños-Mollor I, et al. Clinically used JAK inhibitor blunts dsRNA-induced inflammation and calcification in aortic valve interstitial cells[J]. Febs j, 2021, 288(22): 6528-6542. DOI: 10.1111/febs.16026.

44.Gollmann-Tepeköylü C, Graber M, Hirsch J, et al. Toll-like receptor 3 mediates aortic stenosis through a conserved mechanism of calcification [J]. Circulation, 2023, 147(20): 1518-1533. DOI: 10.1161/circulationaha.122.063481.

45.Niepmann ST, Willemsen N, Boucher AS, et al. Toll-like receptor-3 contributes to the development of aortic valve stenosis[J]. Basic Res Cardiol, 2023, 118(1): 6. DOI: 10.1007/s00395-023-00980-9.

46.Deng XS, Meng X, Zeng Q, et al. Adult aortic valve interstitial cells have greater responses to Toll-like receptor 4 stimulation[J]. Ann Thorac Surg, 2015, 99(1): 62-71.DOI: 10.1016/j.athoracsur.2014.07.027.

47.Venardos N, Deng XS, Yao Q, et al. Simvastatin reduces the TLR4-induced inflammatory response in human aortic valve interstitial cells[J]. J Surg Res, 2018, 230: 101-109.DOI: 10.1016/j.jss.2018.04.054.

48.Deng XS, Meng X, Song R, et al. Rapamycin decreases the osteogenic response in aortic valve interstitial cells through the stat3 pathway[J]. Ann Thorac Surg, 2016, 102(4): 1229-1238. DOI: 10.1016/j.athoracsur.2016.03.033.

49.Parra-Izquierdo I, Castaños-Mollor I, López J, et al. Lipopolysaccharide and interferon-γ team up to activate HIF-1α via STAT1 in normoxia and exhibit sex differences in human aortic valve interstitial cells[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(9): 2168-2179. DOI: 10.1016/j.bbadis.2019.04.014.

50.Yao Q, The E, Ao L, et al. TLR4 stimulation promotes human avic fibrogenic activity through upregulation of neurotrophin 3 production [J]. Int J Mol Sci, 2020, 21(4): 1276. DOI: 10.3390/ijms21041276.

51.Jarrett MJ, Houk AK, Mccuistion PE, et al. Wnt signaling mediates pro-fibrogenic activity in human aortic valve interstitial cells[J]. Ann Thorac Surg, 2021, 112(2): 519-525. DOI: 10.1016/j.athoracsur.2020.08.068.

52.Derbali H, Bossé Y, CôTé N, et al. Increased biglycan in aortic valve stenosis leads to the overexpression of phospholipid transfer protein via Toll-like receptor 2[J]. Am J Pathol, 2010, 176(6): 2638-2645. DOI: 10.2353/ajpath.2010.090541.

53.Song R, Fullerton DA, Ao L, et al. BMP-2 and TGF-β1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells [J]. J Mol Med (Berl), 2015, 93(4): 403-412. DOI: 10.1007/s00109-014-1229-z.

54.Yang H, Wang H, Czura CJ, et al. The cytokine activity of HMGB1[J]. J Leukoc Biol, 2005, 78(1): 1-8. DOI: 10.1189/jlb.1104648.

55.Wang B, Wei G, Liu B, et al. The role of high mobility group box 1 protein in interleukin-18-induced myofibroblastic transition of valvular interstitial cells[J]. Cardiology, 2016, 135(3): 168-178. DOI: 10.1159/000447483.

56.Passmore M, Nataatmadja M, Fung YL, et al. Osteopontin alters endothelial and valvular interstitial cell behaviour in calcific aortic valve stenosis through HMGB1 regulation[J]. Eur J Cardiothorac Surg, 2015, 48(3): e20-9. DOI: 10.1093/ejcts/ezv244.

57.Wang B, Li F, Zhang C, et al. High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells[J]. J Thorac Cardiovasc Surg, 2016, 151(1): 255-262. DOI: 10.1016/j.jtcvs.2015.09.077.

58.Shen W, Zhou J, Wang C, et al. High mobility group box 1 induces calcification of aortic valve interstitial cells via Toll-like receptor 4[J]. Mol Med Rep, 2017, 15(5): 2530-2536. DOI: 10.3892/mmr.2017.6287.

59.Deák F, Wagener R, Kiss I, et al. The matrilins: a novel family of oligomeric extracellular matrix proteins[J]. Matrix Biol, 1999, 18(1): 55-64. DOI: 10.1016/s0945-053x(98)00006-7.

60.The E, Yao Q, Zhang P, et al. Mechanistic roles of Matrilin-2 and klotho in modulating the inflammatory activity of human aortic valve cells[J]. Cells, 2020, 9(2):385. DOI: 10.3390/cells9020385.

61.Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384. DOI: 10.1038/ni.1863.

62.Kapelouzou A, Kontogiannis C, Tsilimigras DI, et al. Differential expression patterns of Toll-like receptors and interleukin-37 between calcific aortic and mitral valve cusps in humans[J]. Cytokine, 2019, 116: 150-160. DOI: 10.1016/j.cyto.2019.01.009.

63.Karadimou G, Plunde O, Pawelzik SC, et al. TLR7 expression is associated with M2 macrophage subset in calcific aortic valve stenosis [J]. Cells, 2020, 9(7):1710. DOI: 10.3390/cells9071710.

64.Chalupova M, Skalova A, Hajek T, et al. Bacterial DNA detected on pathologically changed heart valves using 16S rRNA gene amplification[J]. Folia Microbiol (Praha), 2018, 63(6): 707-711. DOI: 10.1007/s12223-018-0611-6.

65.Oliveira FAF, Forte CPF, Silva PGB, et al. Molecular analysis of oral bacteria in heart valve of patients with cardiovascular disease by real-time polymerase chain reaction[J]. Medicine (Baltimore), 2015, 94(47): e2067.DOI: 10.1097/md.0000000000002067.

66.Pardo A, Signoriello A, Signoretto C, et al. Detection of periodontal pathogens in oral samples and cardiac specimens in patients undergoing aortic valve replacement: a pilot study[J]. J Clin Med, 2021, 10(17):3874. DOI: 10.3390/jcm10173874.

67.Neculae E, Gosav EM, Valasciuc E, et al. The oral microbiota in valvular heart disease: current knowledge and future directions[J]. Life, 2023, 13(1):182. DOI: 10.3390/life13010182.

《医学新知》由国家新闻出版总署批准,中国农工民主党湖北省委主管,武汉大学中南医院和中国农工民主党湖北省委医药卫生工作委员会主办的综合性医学学术期刊,国内外公开发行。

官方公众号

扫一扫,关注我们