Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress of Toll-like receptors in calcified aortic valve disease

Published on Mar. 02, 2024Total Views: 1170 timesTotal Downloads: 1558 timesDownloadMobile

Author: REN Yiming 1, 2, 3 ZHANG Jinhui 1, 3 WANG Congcong 1, 3 WANG Tiankun 1, 3 REN Xuequn 1 ZHOU Jianliang 2

Affiliation: 1. Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China 2. Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China 3. Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Keywords: Calcified aortic valve disease Toll-like receptor The inflammatory response

DOI: 10.12173/j.issn.1004-5511.202312035

Reference: Ren YM, Zhang JH, Wang CC, Wang TK, Ren XQ, Zhou JL. Research progress of Toll-like receptors in calcified aortic valve disease[J]. Yixue Xinzhi Zazhi, 2024, 34(2): 217-225. DOI: 10.12173/j.issn.1004-5511.202312035.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Calcified aortic valve disease (CAVD) was believed to be caused by aging-associated degenerative changes and passive calcium deposition. In recent years, it has been found that CAVD is an active pathological process, but the possible pathogenesis of CAVD has not been elucidated. During the development of CAVD, both innate and adaptive immune responses are activated, and increasing evidence suggests that inflammation plays a central role in the initiation and progression of the disease, in which the function of Toll-like receptors (TLRs) is particularly important. TLRs play a crucial role in controlling infection and maintaining tissue homeostasis by identifying host derived molecules released after pathogen and tissue damage, acting as a sentinel for the innate immune system. This article provides an overview of the current concepts regarding the relationship between TLRs signaling and inflammation and calcification remodeling in the pathogenesis of CAVD. The above regulatory mechanisms can provide new targets and strategies for the treatment of CAVD.

Full-text
Please download the PDF version to read the full text: download
References

1.Coffey S, Roberts-Thomson R, Brown A, et al. Global epidemiology of valvular heart disease[J]. Nat Rev Cardiol, 2021, 18(12): 853-864. DOI: 10.1038/s41569-021-00570-z.

2.Otto CM, Prendergast B. Aortic-valve stenosis-from patients at risk to severe valve obstruction[J]. N Engl J Med, 2014, 371(8): 744-756. DOI: 10.1056/NEJMra1313875.

3.Kronenberg F. Aortic valve stenosis: the long and winding road[J]. Eur Heart J, 2021, 42(22): 2212-2214. DOI: 10.1093/eurheartj/ehaa1069.

4.O'Brien KD. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more)[J]. Arterioscler Thromb Vasc Biol, 2006, 26(8): 1721-1728. DOI: 10.1161/01.ATV.0000227513.13697.ac.

5.Hanna L, Armour C, Xu XY, et al. The haemodynamic and pathophysiological mechanisms of calcific aortic valve disease[J]. Biomedicines, 2022, 10(6):1317. DOI: 10.3390/biomedicines10061317.

6.Shu L, Yuan Z, Li F, et al. Oxidative stress and valvular endothelial cells in aortic valve calcification[J]. Biomed Pharmacother, 2023, 163: 114775. DOI: 10.1016/j.biopha.2023.114775.

7.Pasipoularides A. Calcific aortic valve disease: part 1-molecular pathogenetic aspects, hemodynamics, and adaptive feedbacks[J]. J Cardiovasc Transl Res, 2016, 9(2): 102-118. DOI: 10.1007/s12265-016-9679-z.

8.Cho KI, Sakuma I, Sohn IS, et al. Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease[J]. Atherosclerosis, 2018, 277: 60-65. DOI: 10.1016/j.atherosclerosis.2018.08.029.

9.Lim KH, Staudt LM. Toll-like receptor signaling [J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a011247. DOI: 10.1101/cshperspect.a011247.

10.Jin MS, Lee JO. Structures of the Toll-like receptor family and its ligand complexes[J]. Immunity, 2008, 29(2): 182-191. DOI: 10.1016/j.immuni.2008.07.007.

11.Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development[J]. Development, 2018, 145(9):dev156018. DOI: 10.1242/dev.156018.

12.Wang L, Yu K, Zhang X, et al. Dual functional roles of the MyD88 signaling in colorectal cancer development[J]. Biomed Pharmacother, 2018, 107: 177-184. DOI: 10.1016/j.biopha.2018.07.139.

13.Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: signal os that spur autophagy and immunity[J]. Immunol Rev, 2012, 249(1): 158-175. DOI: 10.1111/j.1600-065X.2012.01146.x.

14.Vijay K. Toll-like receptors in immunity and inflammatory diseases: past, present, and future [J]. Int Immunopharmacol, 2018, 59: 391-412. DOI: 10.1016/j.intimp.2018.03.002.

15.Salvador B, Arranz A, Francisco S, et al. Modulation of endothelial function by Toll like receptors [J]. Pharmacol Res, 2016, 108: 46-56. DOI: 10.1016/j.phrs.2016.03.038.

16.Gong T, Liu L, Jiang W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol, 2020, 20(2): 95-112. DOI: 10.1038/s41577-019-0215-7.

17.Huang J, Xie Y, Sun X, et al. DAMPs, ageing, and cancer: the 'DAMP Hypothesis'[J]. Ageing Res Rev, 2015, 24(Pt A): 3-16. DOI: 10.1016/j.arr.2014.10.004.

18.Kawai T, Akira S. TLR signaling[J]. Semin Immunol, 2007, 19(1): 24-32. DOI: 10.1016/j.smim.2006.12.004.

19.Pereira M, Durso DF, Bryant CE, et al. The IRAK4 scaffold integrates TLR4-driven TRIF and MyD88 signaling pathways[J]. Cell Rep, 2022, 40(7): 111225. DOI: 10.1016/j.celrep.2022.111225.

20.Chen WF, Shih YH, Liu HC, et al. 6-methoxyflavone suppresses neuroinflammation in lipopolysaccharide- stimulated microglia through the inhibition of TLR4/MyD88/p38 MAPK/NF-κB dependent pathways and the activation of HO-1/NQO-1 signaling[J]. Phytomedicine, 2022, 99: 154025. DOI: 10.1016/j.phymed.2022.154025.

21.Leulier F, Lemaitre B. Toll-like receptors-taking an evolutionary approach [J]. Nat Rev Genet, 2008, 9(3): 165-178. DOI: 10.1038/nrg2303.

22.Chen JH, Simmons CA. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues[J]. Circ Res, 2011, 108(12): 1510-1524. DOI: 10.1161/circresaha.110.234237.

23.Davies PF, Passerini AG, Simmons CA. Aortic valve: turning over a new leaf(let) in endothelial phenotypic heterogeneity[J]. Arterioscler Thromb Vasc Biol, 2004, 24(8): 1331-1333. DOI: 10.1161/01.ATV.0000130659.89433.c1.

24.Mohty D, Pibarot P, Després JP, et al. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis[J]. Arterioscler Thromb Vasc Biol, 2008, 28(1): 187-193. DOI: 10.1161/atvbaha.107.154989.

25.Coté N, Mahmut A, Bosse Y, et al. Inflammation is associated with the remodeling of calcific aortic valve disease[J]. Inflammation, 2013, 36(3): 573-581. DOI: 10.1007/s10753-012-9579-6.

26.Juvonen J, Laurila A, Juvonen T, et al. Detection of chlamydia pneumoniae in human nonrheumatic stenotic aortic valves[J]. J Am Coll Cardiol, 1997, 29(5): 1054-1059. DOI: 10.1016/s0735-1097(97)00003-x.

27.Nakano K, Inaba H, Nomura R, et al. Detection of cariogenic streptococcus mutans in extirpated heart valve and atheromatous plaque specimens[J]. Journal of Clinical Microbiology, 2006, 44(9): 3313-3317. DOI: 10.1128/jcm.00377-06.

28.Skowasch D, Tuleta I, Steinmetz M, et al. Pathogen burden in degenerative aortic valves is associated with inflammatory and immune reactions[J]. J Heart Valve Dis, 2009, 18(4): 411-417. https://pubmed.ncbi.nlm.nih.gov/19852145/.

29.Cohen DJ, Malave D, Ghidoni JJ, et al. Role of oral bacterial flora in calcific aortic stenosis: an animal model [J]. Ann Thorac Surg, 2004, 77(2): 537-543. DOI: 10.1016/s0003-4975(03)01454-1.

30.Mathieu P, Bouchareb R, Boulanger MC. Innate and adaptive immunity in calcific aortic valve disease[J]. J Immunol Res, 2015, 2015: 851945. DOI: 10.1155/2015/851945.

31.Meng X, Ao L, Song Y, et al. Expression of functional Toll-like receptors 2 and 4 in human aortic valve interstitial cells: potential roles in aortic valve inflammation and stenosis[J]. Am J Physiol Cell Physiol, 2008, 294(1): C29-35. DOI: 10.1152/ajpcell.00137.2007.

32.Yang X, Fullerton DA, Su X, et al. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2[J]. J Am Coll Cardiol, 2009, 53(6): 491-500. DOI: 10.1016/j.jacc.2008.09.052.

33.Venardos N, Nadlonek NA, Zhan Q, et al. Aortic valve calcification is mediated by a differential response of aortic valve interstitial cells to inflammation[J]. J Surg Res, 2014, 190(1): 1-8. DOI: 10.1016/j.jss.2014.03.051.

34.Zhan Q, Zeng Q, Song R, et al. IL-37 suppresses MyD88-mediated inflammatory responses in human aortic valve interstitial cells[J]. Mol Med, 2017, 23: 83-91. DOI: 10.2119/molmed.2017.00022.

35.López J, Fernández-Pisonero I, Dueñas AI, et al. Viral and bacterial patterns induce TLR-mediated sustained inflammation and calcification in aortic valve interstitial cells[J]. Int J Cardiol, 2012, 158(1): 18-25. DOI: 10.1016/j.ijcard.2010.12.089.

36.Song R, Ao L, Zhao KS, et al. Soluble biglycan induces the production of ICAM-1 and MCP-1 in human aortic valve interstitial cells through TLR2/4 and the ERK1/2 pathway[J]. Inflamm Res, 2014, 63(9): 703-710. DOI: 10.1007/s00011-014-0743-3.

37.Lee JH, Meng X, Weyant MJ, et al. Stenotic aortic valves have dysfunctional mechanisms of anti-inflammation: implications for aortic stenosis[J]. J Thorac Cardiovasc Surg, 2011, 141(2): 481-486. DOI: 10.1016/j.jtcvs.2010.11.002.

38.Rabkin SW, Lodhia P, Luong MW. P38 MAP kinase in valve interstitial cells is activated by angiotensin II or nitric oxide/peroxynitrite, but reduced by Toll-like receptor-2 stimulation[J]. J Heart Valve Dis, 2009, 18(6): 653-661. https://pubmed.ncbi.nlm.nih.gov/20099714/.

39.Li G, Qiao W, Zhang W, et al. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification[J]. J Thorac Cardiovasc Surg, 2017, 153(6): 1318-1327.e1. DOI: 10.1016/j.jtcvs.2017.01.052.

40.Zhang P, The E, Nedumaran B, et al. Monocytes enhance the inflammatory response to TLR2 stimulation in aortic valve interstitial cells through paracrine up-regulation of TLR2 level[J]. Int J Biol Sci, 2020, 16(15): 3062-3074. DOI: 10.7150/ijbs.49332.

41.Gantier MP, Williams BR. The response of mammalian cells to double-stranded RNA[J]. Cytokine Growth Factor Rev, 2007, 18(5-6): 363-371. DOI: 10.1016/j.cytogfr.2007.06.016.

42.Zhan Q, Song R, Zeng Q, et al. Activation of TLR3 induces osteogenic responses in human aortic valve interstitial cells through the NF-κB and ERK1/2 pathways[J]. Int J Biol Sci, 2015, 11(4): 482-493. DOI: 10.7150/ijbs.10905.

43.Parra-Izquierdo I, Sánchez-Bayuela T, Castaños-Mollor I, et al. Clinically used JAK inhibitor blunts dsRNA-induced inflammation and calcification in aortic valve interstitial cells[J]. Febs j, 2021, 288(22): 6528-6542. DOI: 10.1111/febs.16026.

44.Gollmann-Tepeköylü C, Graber M, Hirsch J, et al. Toll-like receptor 3 mediates aortic stenosis through a conserved mechanism of calcification [J]. Circulation, 2023, 147(20): 1518-1533. DOI: 10.1161/circulationaha.122.063481.

45.Niepmann ST, Willemsen N, Boucher AS, et al. Toll-like receptor-3 contributes to the development of aortic valve stenosis[J]. Basic Res Cardiol, 2023, 118(1): 6. DOI: 10.1007/s00395-023-00980-9.

46.Deng XS, Meng X, Zeng Q, et al. Adult aortic valve interstitial cells have greater responses to Toll-like receptor 4 stimulation[J]. Ann Thorac Surg, 2015, 99(1): 62-71.DOI: 10.1016/j.athoracsur.2014.07.027.

47.Venardos N, Deng XS, Yao Q, et al. Simvastatin reduces the TLR4-induced inflammatory response in human aortic valve interstitial cells[J]. J Surg Res, 2018, 230: 101-109.DOI: 10.1016/j.jss.2018.04.054.

48.Deng XS, Meng X, Song R, et al. Rapamycin decreases the osteogenic response in aortic valve interstitial cells through the stat3 pathway[J]. Ann Thorac Surg, 2016, 102(4): 1229-1238. DOI: 10.1016/j.athoracsur.2016.03.033.

49.Parra-Izquierdo I, Castaños-Mollor I, López J, et al. Lipopolysaccharide and interferon-γ team up to activate HIF-1α via STAT1 in normoxia and exhibit sex differences in human aortic valve interstitial cells[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(9): 2168-2179. DOI: 10.1016/j.bbadis.2019.04.014.

50.Yao Q, The E, Ao L, et al. TLR4 stimulation promotes human avic fibrogenic activity through upregulation of neurotrophin 3 production [J]. Int J Mol Sci, 2020, 21(4): 1276. DOI: 10.3390/ijms21041276.

51.Jarrett MJ, Houk AK, Mccuistion PE, et al. Wnt signaling mediates pro-fibrogenic activity in human aortic valve interstitial cells[J]. Ann Thorac Surg, 2021, 112(2): 519-525. DOI: 10.1016/j.athoracsur.2020.08.068.

52.Derbali H, Bossé Y, CôTé N, et al. Increased biglycan in aortic valve stenosis leads to the overexpression of phospholipid transfer protein via Toll-like receptor 2[J]. Am J Pathol, 2010, 176(6): 2638-2645. DOI: 10.2353/ajpath.2010.090541.

53.Song R, Fullerton DA, Ao L, et al. BMP-2 and TGF-β1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells [J]. J Mol Med (Berl), 2015, 93(4): 403-412. DOI: 10.1007/s00109-014-1229-z.

54.Yang H, Wang H, Czura CJ, et al. The cytokine activity of HMGB1[J]. J Leukoc Biol, 2005, 78(1): 1-8. DOI: 10.1189/jlb.1104648.

55.Wang B, Wei G, Liu B, et al. The role of high mobility group box 1 protein in interleukin-18-induced myofibroblastic transition of valvular interstitial cells[J]. Cardiology, 2016, 135(3): 168-178. DOI: 10.1159/000447483.

56.Passmore M, Nataatmadja M, Fung YL, et al. Osteopontin alters endothelial and valvular interstitial cell behaviour in calcific aortic valve stenosis through HMGB1 regulation[J]. Eur J Cardiothorac Surg, 2015, 48(3): e20-9. DOI: 10.1093/ejcts/ezv244.

57.Wang B, Li F, Zhang C, et al. High-mobility group box-1 protein induces osteogenic phenotype changes in aortic valve interstitial cells[J]. J Thorac Cardiovasc Surg, 2016, 151(1): 255-262. DOI: 10.1016/j.jtcvs.2015.09.077.

58.Shen W, Zhou J, Wang C, et al. High mobility group box 1 induces calcification of aortic valve interstitial cells via Toll-like receptor 4[J]. Mol Med Rep, 2017, 15(5): 2530-2536. DOI: 10.3892/mmr.2017.6287.

59.Deák F, Wagener R, Kiss I, et al. The matrilins: a novel family of oligomeric extracellular matrix proteins[J]. Matrix Biol, 1999, 18(1): 55-64. DOI: 10.1016/s0945-053x(98)00006-7.

60.The E, Yao Q, Zhang P, et al. Mechanistic roles of Matrilin-2 and klotho in modulating the inflammatory activity of human aortic valve cells[J]. Cells, 2020, 9(2):385. DOI: 10.3390/cells9020385.

61.Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384. DOI: 10.1038/ni.1863.

62.Kapelouzou A, Kontogiannis C, Tsilimigras DI, et al. Differential expression patterns of Toll-like receptors and interleukin-37 between calcific aortic and mitral valve cusps in humans[J]. Cytokine, 2019, 116: 150-160. DOI: 10.1016/j.cyto.2019.01.009.

63.Karadimou G, Plunde O, Pawelzik SC, et al. TLR7 expression is associated with M2 macrophage subset in calcific aortic valve stenosis [J]. Cells, 2020, 9(7):1710. DOI: 10.3390/cells9071710.

64.Chalupova M, Skalova A, Hajek T, et al. Bacterial DNA detected on pathologically changed heart valves using 16S rRNA gene amplification[J]. Folia Microbiol (Praha), 2018, 63(6): 707-711. DOI: 10.1007/s12223-018-0611-6.

65.Oliveira FAF, Forte CPF, Silva PGB, et al. Molecular analysis of oral bacteria in heart valve of patients with cardiovascular disease by real-time polymerase chain reaction[J]. Medicine (Baltimore), 2015, 94(47): e2067.DOI: 10.1097/md.0000000000002067.

66.Pardo A, Signoriello A, Signoretto C, et al. Detection of periodontal pathogens in oral samples and cardiac specimens in patients undergoing aortic valve replacement: a pilot study[J]. J Clin Med, 2021, 10(17):3874. DOI: 10.3390/jcm10173874.

67.Neculae E, Gosav EM, Valasciuc E, et al. The oral microbiota in valvular heart disease: current knowledge and future directions[J]. Life, 2023, 13(1):182. DOI: 10.3390/life13010182.