乳腺癌是女性最常见的恶性肿瘤之一,2020年世界卫生组织国际癌症研究机构(IARC)最新发布的全球癌症负担数据表明,全球乳腺癌新发病例高达226万例,超过肺癌成为全球第一大癌[1-2]。2012年我国新诊断乳腺癌占全球的12.2%,死亡病例占全球的9.6%,该数据源于中国国家癌症登记中心,只有13%的中国人口被纳入,可能低估了我国乳腺癌发病率和死亡率[3]。美国癌症协会最新数据显示,乳腺癌发病率以每年0.3%的速度缓慢增长,主要为Luminal 型乳腺癌[4]。
近年来,人们尝试采用各种高通量分子技术探究乳腺癌的内在本质,根据其分子特征进行分类、治疗及预后评估,其中基因表达谱技术的应用最受关注。Perou等于2000年首次通过基因表达谱聚类分析方法,将乳腺癌分为管腔上皮 A 型 (Luminal A)、管腔上皮 B 型 (Luminal B)、HER-2 过表达型、基底样型 (Basal-like) 和正常乳腺样型 (Normal-like) 5种分子类型。此后,研究者开发了很多简化模式如PAM50和SCMGENE等,来增强分子分型的实用性[5-7]。2011年St.Gallen专家组达成共识,采用雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor, PR)、人类表皮生长因子受体2(human epidermal growth factor receptor-2, HER2)、Ki67 四种免疫组化标记来进行乳腺癌分子分型,将乳腺癌分为Luminal A型、Luminal B型、HER-2 过表达型及三阴性乳腺癌 (triple-negative breast cancer,TNBC)[8-9]。之后的临床研究,证实了它们在预后和治疗反应等方面的特异性,受到广泛认可。不同的分子分型在乳腺癌的治疗和预后上存在一定的差异,其中Luminal A型乳腺癌预后最好,Luminal B型次之,Basal-like型乳腺癌预后最差[8-9]。
微小RNA(microRNA, miRNA)是一类长约22个核苷酸组成的非编码单链RNA分子,通过与靶基因mRNA互补结合,从而参与基因表达转录后的调控[10]。有研究表明,miRNA的表达水平与乳腺癌的免疫组化、分子分型、预后及治疗反应密切相关[11]。Shin等发现miR-199a-5p在三阴性乳腺癌组织中表达低于正常乳腺组织[12]。而Bockmeyer等采用聚类分析方法发现,相较于Luminal型乳腺癌,Basal-like型乳腺癌在miR-199a-3p中表达水平明显上调[13]。在临床上,Basal-like型乳腺癌较Luminal型乳腺癌药物反应性和预后差,且易侵袭和转移。为了探讨Luminal型乳腺癌和Basal-like型乳腺癌间是否存在差异miRNAs导致这种差别,本文拟通过生物信息学方法,系统全面获取和分析Luminal 型和Basal-like型乳腺癌之间差异表达的miRNAs,以期能找到在这两类预后相差较大的乳腺癌中最相关的miRNAs。为以后两类分子分型乳腺癌,尤其是Basal-like型乳腺癌的诊断和治疗方面提供依据。
1 资料与方法
1.1 表达谱芯片数据的获取
在美国国立生物技术信息中心(National Center for Biotechnology Information, NCBI)GEO数据库(https://www.ncbi.nlm.nih.gov/geo/)中,以“microRNAs”和“breast cancer”为检索词进行检索,并按照以下纳入与排除标准进行筛选。纳入标准:①miRNAs物种为人类;②数据集中必须同时包含Luminal型和Basal-like型乳腺癌样本;③数据集根据PAM50划分乳腺癌的分子分型。不同数据集、相同基因平台时,取样本量最大最全者。最后共纳入2个数据集GSE81000与GSE40267,分别由芯片平台GPL10656与GPL10850提供注释信息。筛选并下载2个数据集中Luminal型和Basal-like型的乳腺癌miRNAs微阵列数据集,其中GSE81000中Luminal型乳腺癌244例,Basal-like型乳腺癌45例; GSE40267中Luminal型和Basal-like型乳腺癌分别为20例和94例。
1.2 差异表达miRNAs的筛选
利用GEO2R在线分析工具(https://www.ncbi.nlm.nih.gov/geo/geo2r/?),分析Luminal型和Basal-like型2组乳腺癌的微阵列数据,以P<0.05且差异倍数(fold change, FC)的绝对值≥1.5作为差异表达miRNAs的筛选标准。使用Venn diagram webtool(http://bioinformatics.psb.ugent.be/webtools/Venn/)筛选两个数据集相交的miRNAs。两个数据集共同的差异miRNAs被视为关键miRNAs。
1.3 差异表达miRNAs的靶基因预测
利用miRNAs靶基因预测数据库mirDIP[14](http://ophid.utoronto.ca/mirDIP/index.jsp#r)在线预测2组乳腺癌差异表达miRNAs的潜在靶基因,并根据Integrated Score值≥0.9筛选最相关的靶基因。
1.4 实时荧光定量PCR检测差异表达miRNAs
人乳腺癌细胞系MCF-7与MDA-MB-468 来源于ATCC,采用10%胎牛血清的DMEM培养基于37℃恒温孵箱中培养,选择处于对数生长期的细胞进行实验。采用TRIZOL分别提取MCF-7细胞与MDA-MB-468细胞的总RNA。利用反转录试剂盒(ELK Biotechnology)生成cDNA模板,再采用qRT-PCR试剂盒(ELK Biotechnology)检测差异miRNAs的相对表达水平,以U6基因的mRNA作为内参基因。hsa-miR-199a-5p正向引物序列5'-CCCAGTGTTCAGACTACCTGTTC- 3',反向引物序列5'-CTCAACTGGTGTCGTGGAGTC-3';hsa-miR-199b-5p正向引物序列5'-CCCAGTGT TTAGACTATCTGTTCCT-3',反向引物序列5'- CTCAACTGGTGTCGTGGAGTC- 3'。PCR扩增条件:预变性95℃3 min;循环段,95℃10s,58℃30s,72℃30s,循环40次。数据采用2-ΔΔCT 法进行分析。
1.5 不同分子分型乳腺癌差异表达miRNAs的生存分析
利用METABRIC数据库(http://www.cbiopor tal.org/study/summary?id=brca_metabric),对Breast cancer miRNA中979例 Luminal型乳腺癌组织样本(其中Luminal A型546例、Luminal B型433例)和203例Basal-like型乳腺癌组织样本,在hsa-miR-199a-5p和hsa-miR-199b-5p中的差异表达进行生存分析。
1.6 统计分析
通过R语言的Pheatmap包对筛选出来最相关靶基因进行可视化分析。采用SPSS 20.0处理PCR数据,两组间采用独立样本t检验,以P<0.05具有统计学差异。对METABRIC数据库中筛选样本采用Kaplan-Meier Plotter(http://kmplot.com/analysis/index.php?p=service&cancer=breast_mirna)进行生存分析,针对所有可能值分组进行Cox回归,将最小P值对应的分界值确定为最佳cut off 值,P<0.05具有统计学差异。
2 结果
2.1 差异表达miRNAs的获取
采用GEO2R分析工具,根据筛选标准,从数据集GSE81000与GSE40267中共筛选出896 条差异miRNAs,其中人源miRNAs 878条,最终在两个数据集中筛选出35种关键miRNAs,详见图1。相较于Luminal型乳腺癌,有18种miRNAs在Basal-like型患者中表达下调,17种miRNAs表达上调(表1)。
图1 两个数据集差异表达miRNAs韦恩图
Figure 1. Venn diagram of differential expression of miRNAs in two data sets
注:A是下调miRNAs,B是上调miRNAs。
表1 利用GEO2R在线分析工具筛选获得差异表达的关键miRNAs
Table 1. The Key differentially expressed miRNAs were screened by GEO2R online analysis
2.2 差异表达miRNAs的靶基因预测
靶基因预测数据库mirDIP检索并筛选结果显示,35种关键miRNAs的潜在靶基因共4 180个,最相关的靶基因有19个,其中5个靶基因(SLC24A3、MYRF、PODXL、CELSR1、CAPRIN1)由miR-199a-5p与miR-199b-5p共同靶向。使用R语言Pheatmap包进行可视化分析,结果如图2所示。
图2 利用靶基因预测数据库mirDIP预测差异表达miRNAs的最相关靶基因结果
Figure 2. The most relevant target genes of predicted differentially expressed miRNAs by target gene prediction database mirDIP
2.3 实时荧光定量PCR检测差异表达miRNAs
采用qRT-PCR检测人乳腺癌细胞MCF-7(Luminal型)和MDA-MB-468(Basal-like型)细胞中miR-199a-5p与miR-199b-5p的表达水平。与MCF-7细胞相比,MDA-MB-468细胞中miR-199a-5p与miR-199b-5p表达水平均呈下降趋势,但差异不具有统计学意义(P>0.05)。
2.4 不同分子分型乳腺癌生存分析
利用METABRIC数据库分析546例Luminal A型、433例Luminal B型及203例Basal-like型乳腺癌组织样本中miR-199a-5p和miR-199b-5p的表达水平与患者总体生存率的关系,发现miR-199a-5p与miR-199b-5p表达水平与不同分子分型乳腺癌的预后具有相关性。在Luminal型乳腺癌患者中,miR-199a-5p(P=0.003,cut off值为9.26)与miR-199b-5p(P<0.001,cut off值为9.23)低表达与Luminal A型乳腺癌患者的总生存率降低相关,具有统计学差异,生存分析结果见图3A和图3B。而在Luminal B型乳腺癌中无统计学意义,详见图3C和图3D。尽管在Basal-like型乳腺癌患者中,miR-199a-5p与miR-199b-5p表达与其预后相关性无统计学差异(P>0.05),但在miR-199a-5p与miR-199b-5p高表达的Basal-like型乳腺癌患者总生存率的整体趋势高于低表达的患者,生存曲线见图3E和图3F。
图3 A、C和E分别表示Luminal A型、Luminal B型和Basal-like型乳腺癌在miR-199a-5P中表达水平与预后生存率的关系;B、D和F分别表示Luminal A型、Luminal B型和Basal-like型乳腺癌在miR-199b-5P中表达水平与预后生存率的关系
Figure 3. Kaplan–Meier overall survival analyses for the miR-199a-5p expressed in the (A) Luminal A, (C) Luminal B, (E) Basal-like breast cancer patients,and the miR-199b-5p expressed in the (B) Luminal A, (D) Luminal B, (F) Basal-like breast cancer patients
3 讨论
乳腺癌在分子水平具有高度异质性,不同分子分型的乳腺癌患者对治疗反应各不相同。4种主要分子分型的乳腺癌患者预后有显著差异,其中Luminal A型乳腺癌预后最好, Basal-like型乳腺癌预后最差。乳腺癌的早期诊断对改善预后至关重要。随着医学技术的发展,分子生物标志物如ER、PR和HER-2,已充分用于诊断和预测肿瘤预后[15]。但这些生物标志物存在一定局限性,不能从外周血直接获取。
miRNA可以调控细胞增殖、分化、凋亡、肿瘤微环境、侵袭和迁移,在乳腺癌的发生和发展中具有重要作用 [16-17]。再加上miRNA在血液中的稳定性、无创性、特异性和可测量性[18-19],使其成为乳腺癌诊断、治疗和预后预测理想的生物标志物。不同于以往的小样本研究,本研究整合了来自不同人群的2个miRNA微阵列数据集,通过生物信息学方法分析Luminal 型和Basal-like型乳腺癌之间差异表达的miRNAs。最终筛选出35种差异表达的关键miRNAs,其中18种miRNAs 在Basal-like型乳腺癌相较于Luminal型乳腺癌中表达下调,17种表达上调。靶基因预测获得潜在靶基因共4 180个,最相关的靶基因有19个,与其密切相关的miRNAs是miR-199a-5p和miR-199b-5p。采用qRT-PCR检测其在乳腺癌细胞MCF-7和MDA-MB-468细胞表达水平,结果显示与MCF-7细胞相比,MDA-MB-468细胞在miR-199a-5p与miR-199b-5p表达水平均呈下降趋势。目前虽然也有研究表明miR-199a-5p与miR-199b-5p低表达与乳腺癌总生存率显著降低相关,但研究多聚焦TNBC[20-23]。TNBC并不等同于Basal-like乳腺癌,TNBC中还包含20% Non-basal-like乳腺癌[24]。因此,miR-199a-5p和miR-199b-5p表达水平与Basal-like乳腺癌和Luminal乳腺癌预后关系尚未得到评估。本研究侧重于探讨miR-199a-5p和miR-199b-5p的表达水平与Basal-like和Luminal型乳腺癌患者预后的关系。生存分析结果显示,miR-199a-5p与miR-199b-5p低表达与Luminal A型乳腺癌患者的总生存率降低显著相关。而Luminal B型乳腺癌患者预后却与miR-199a-5p与miR-199b-5p表达水平无关。尽管无统计学差异,Basal-like型乳腺癌患者总生存率在miR-199a-5p与miR-199b-5p低表达时亦呈现降低的趋势。有研究表明,miR-199a-5p可靶向Ets-1(E-Twenty-Six-1)的3'-UTR降低β1整合素水平,从而通过FAK/Src/Akt/mTOR信号通路减轻乳腺癌的侵袭[25]。Lin等研究发现miR-199b-5p具有抗血管生成作用,通过直接靶向激活素受体样激酶1(activin receptor-like kinase 1, ALK1),提示miR-199b-5p可能是一个潜在的抗血管生成的乳腺癌治疗靶点[26]。
本研究通过生物信息学分析,确定了35个在Luminal 型和Basal-like型乳腺癌中差异表达的关键miRNAs,可能在乳腺癌的个体化治疗中发挥重要作用。其中,miR-199a-5p、miR-199b-5p与Luminal A型乳腺癌的预后相关,有望成为其治疗的新靶点。相关miRNA在乳腺癌分子分型中的调控机制有待进一步研究。
利益冲突 本研究所有作者均无利益冲突。
1.Heer E, Harper A, Escandor N, et al. Global burden and trends in premenopausal and postmenopausal breast cancer: a population-based study[J]. Lancet Glob Health, 2020, 8(8): e1027-e1037. DOI: 10.1016/S2214-109X(20) 30215-1.
2.International Agency for Research on Cancer. Latest global cancer data: cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020[EB/OL]. [Access on 2020-12-15]. https://www.iarc.who.int/wp-content/uploads/2020/12/pr292_E.pdf.
3.Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China[J]. Lancet Oncol, 2014, 15(7): e279-e289. DOI: 10. 1016/S1470-2045(13)70567-9.
4.DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(6): 438-451. DOI: 10.3322/caac.21583.
5.Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000, 406(6797): 747-752. DOI: 10.1038/35021093.
6.Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes[J]. J Clin Oncol, 2009, 27(8): 1160-1167. DOI: 10.1200/JCO. 2008.18.1370.
7.Haibe-Kains B, Desmedt C, Loi S, et al. A three-gene model to robustly identify breast cancer molecular subtypes[J]. J Natl Cancer Inst, 2012, 104(4): 311-325. DOI: 10.1093/jnci/djr545.
8.张力文.基于分子分型的乳腺癌流行病学研究[D]. 天津医科大学, 2018. DOI: 10.27366/d.cnki.gtyku.2018.000 007. [Zhang LW. Epidemiological study of breast cancer based on molecular subtyping[D]. Tianjin medical university, 2018.]
9.李杰宝, 喻晓程, 田野. 乳腺癌分子分型与临床病理参数的关系及预后[J]. 中华实验外科杂志, 2018, 35(6): 1027-1029. DOI: 10.3760/cma.j.issn.1001- 9030.2018.06.010. [Li JB, Yu XC, Tian Y. Correlation between molecular subtypes, clinicopathological parameters and prognosis of breast cancer[J]. Chinese Journal of Experimental Surgery, 2018, 35(6): 1027-1029.]
10.O'Brien J, Hayder H, Zayed Y, et al. Overview of Microrna biogenesis, mechanisms of actions, and cir-culation[J]. Front Endocrinol (Lausanne), 2018, 9: 402. DOI: 10.3389/fendo.2018.00402.
11.Perri F, Longo F, Giuliano M, et al. Epigenetic control of gene expression: potential implications for cancer treatment[J]. Crit Rev Oncol Hematol, 2017, 111: 166-172. DOI: 10.1016/j.critrevonc.2017.01.020.
12.Shin VY, Siu JM, Cheuk I, et al. Circulating cell-free miRNAs as biomarker for triple-negative breast cancer[J]. Br J Cancer, 2015, 112(11): 1751-1759. DOI: 10.1038/bjc.2015.143.
13.Bockmeyer CL, Christgen M, Müller M, et al. MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes[J]. Breast Cancer Res Treat, 2011, 130(3): 735-745. DOI: 10.1007/s10549-010-1303-3.
14.Tokar T, Pastrello C, Rossos AE, et al. mirDIP 4.1-integrative database of human microRNA target predictions[J]. Nucleic Acids Res, 2018, 46(1): 360-370. DOI: 10.1093/nar/gkx1144.
15.Wesseling J, Tinterri C, Sapino A, et al. An international study comparing conventional versus mRNA level testing (Target Print) for ER, PR, and HER2 status of breast cancer[J]. Virchows Arch, 2016, 469(3): 297-304. DOI: 10.1007/s00428-016-1979-9.
16.Li L, Xiao B, Tong H, et al. Regulation of breast cancer tumorigenesis and metastasis by miRNAs[J]. Expert Rev Proteomics, 2012, 9(6): 615-625. DOI: 10.1586/epr.12.64.
17.王维君, 何科基, 那光玮, 等. microRNA的生物学功能及其在乳腺癌发生发展中的作用[J]. 甘肃医药, 2020, 39(5):389-391. DOI: 10.15975/j. cnki.gsyy. 2020.05.002. [Wang WJ, He KJ, Na GW, et al. Biological function of microRNA and its role in the development of breast cancer[J]. Gansu Medical Journal, 2020, 39(5): 389-391.]
18.Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A, 2008, 105(30): 10513-10518. DOI: 10.1073/pnas.0804549105.
19.Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction[J]. Pharmacol Ther, 2017, 172: 34-49. DOI: 10.1016/j.pharmthera.2016.11.012.
20.翟丽敏, 杨硕, 李文通. miRNA-199a-5p通过SP1调节ERK5抑制乳腺癌MDA-MB-231细胞侵袭的机制[J].临床与实验病理学杂志, 2015, 31(9): 981-985. DOI: 10.13315/j.cnki.cjcep.2015.09.005. [Zhai LM, Yang S, Li WT. miRNA-199a-5p inhibit the invasion of MDA-MB-231 cells via regulating ERK5 through SP1 [J]. J Clin Exp Pathol, 2015, 31(9): 981-985.]
21.Turashvili G, Lightbody ED, Tyryshkin K, et al. Novel prognostic and predictive microRNA targets for triple-negative breast cancer[J]. FASEB J, 2018, 32: 1-18. DOI: 10.1096/fj.201800120R.
22.Wu A, Chen Y, Liu Y, et al. miR-199b-5p inhibits triple negative breast cancer cell proliferation, migration and invasion by targeting DDR1[J]. Oncol Lett, 2018, 16(4): 4889-4896. DOI: 10.3892/ol.2018.9255.
23.Fang C, Wang FB, Li Y, et al. Down-regulation of miR-199b-5p is correlated with poor prognosis for breast cancer patients[J]. Biomed Pharmacotherapy, 2016, 84: 1189-1193. DOI: 10.1016/j.biopha.2016.10.006.
24.Temian DC, Pop LA, Irimie AI, et al. The epigenetics of triple-negative and basal-like breast cancer: current knowledge[J]. J Breast Cancer, 2018, 21(3): 233-243. DOI: 10.4048/jbc.2018.21.e41.
25.Li W, Wang H, Zhang J, et al. miR-199a-5p regulates β1 integrin through Ets-1 to suppress invasion in breast cancer[J]. Cancer Sci. 2016, 107(7): 916-923. DOI: 10.1111/cas.12952.
26.Lin X, Qiu W, Xiao Y, et al. MiR-199b-5p suppresses tumor angiogenesis mediated by vascular endo-thelial cells in breast cancer by targeting ALK1[J]. Front Genet, 2020, 10: 1397. DOI: 10.3389/fgene.2019.01397.