Osteoarthritis (OA) is a globally prevalent degenerative joint disease characterized by progressive cartilage destruction, synovial inflammation, subchondral bone remodeling and osteophyte formation. Although it is well established that genetic, environmental, biomechanical factors and chronic inflammation may be involved in the progression of OA, the precise pathogenesis of OA remains only partially understood. Protein ubiquitination is an important class of post-translational modifications that affects the stability and localization of proteins by modifying specific proteins with ubiquitination and has been found to be associated with various diseases, including cardiovascular diseases, neoplasms, nerve degeneration and OA. E3 ubiquitin ligase plays a particularly essential role in the process of ubiquitination modification with its ability to specifically recognize protein substrates. At present, E3 ubiquitin ligases from the neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) family are receiving increasing attention in research on the pathophysiology of OA. They accelerate or improve the occurrence and development of OA by using targeted ubiquitination to control the function and homeostasis of cartilage and bone cells. The review summarizes an overview of the relationship between common E3 ubiquitin ligases in the NEDD4 family and OA processes such as proliferation, differentiation, apoptosis, autoimmune activity, and inflammation and explores the potential of targeted E3 ubiquitin ligase regulation in the treatment of OA, thereby providing a new strategy for diagnosis and treatment of OA in clinical strategies.
HomeArticlesVol 35,2025 No.5Detail
Research progress on the mechanism of E3 ubiquitin ligase in the occurrence and development of osteoarthritis
Published on May. 25, 2025Total Views: 31 timesTotal Downloads: 10 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Perruccio AV, Young JJ, Wilfong JM, et al. Osteoarthritis year in review 2023: epidemiology & therapy[J]. Osteoarthritis Cartilage, 2024, 32(2): 159-165. DOI: 10.1016/j.joca.2023.11.012.
2.Scheuing WJ, Reginato AM, Deeb M, et al. The burden of osteoarthritis: is it a rising problem?[J]. Best Pract Res Clin Rheumatol, 2023, 37(2): 101836. DOI: 10.1016/j.berh.2023.101836.
3.Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options [J]. Med Clin North Am, 2020, 104(2): 293-311. DOI: 10.1016/j.mcna.2019.10.007.
4.Kulkarni K, Karssiens T, Kumar V, et al. Obesity and osteoarthritis[J]. Maturitas, 2016, 89: 22-28. DOI: 10.1016/j.maturitas.2016.04.006.
5.Long H, Liu Q, Yin H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019[J]. Arthritis Rheumatol, 2022, 74(7): 1172-1183. DOI: 10.1002/art.42089.
6.Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors[J]. Ann Intern Med, 2000, 133(8): 635-646. DOI: 10.7326/0003-4819-133-8-200010170-00016.
7.Jiang Y. Osteoarthritis year in review 2021: biology[J]. Osteoarthritis Cartilage, 2022, 30(2): 207-215. DOI: 10.1016/j.joca.2021.11.009.
8.Lee JM, Hammarén HM, Savitski MM, et al. Control of protein stability by post-translational modifications[J]. Nat Commun, 2023, 14(1): 201. DOI: 10.1038/s41467-023-35795-8.
9.Liao SY, Zheng QQ, Shen HT, et al. HECTD1-mediated ubiquitination and degradation of rubicon regulates autophagy and osteoarthritis pathogenesis[J]. Arthritis Rheumatol, 2023, 75(3): 387-400. DOI: 10.1002/art.42369.
10.Gong Z, Zhu J, Chen J, et al. CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications[J]. Nat Commun, 2023, 14(1): 5242. DOI: 10.1038/s41467-023-40975-7.
11.Cockram PE, Kist M, Prakash S, et al. Ubiquitination in the regulation of inflammatory cell death and cancer[J]. Cell Death Differ, 2021, 28(2): 591-605. DOI: 10.1038/s41418-020-00708-5.
12.Lin Y, Jiang S, Su J, et al. Novel insights into the role of ubiquitination in osteoarthritis[J]. Int Immunopharmacol, 2024, 132: 112026. DOI: 10.1016/j.intimp.2024.112026.
13.Umlauf D, Frank S, Pap T, et al. Cartilage biology, pathology, and repair[J]. Cell Mol Life Sci, 2010, 67(24): 4197-4211. DOI: 10.1007/s00018-010-0498-0.
14.Archer CW, Francis-West P. The chondrocyte[J]. Int J Biochem Cell Biol, 2003, 35(4): 401-404. DOI: 10.1016/s1357-2725(02)00301-1.
15.Grillet B, Pereira RVS, Van Damme J, et al. Matrix metalloproteinases in arthritis: towards precision medicine[J]. Nat Rev Rheumatol, 2023, 19(6): 363-377. DOI: 10.1038/s41584-023-00966-w.
16.De Roover A, Escribano-Núñez A, Monteagudo S, et al. Fundamentals of osteoarthritis: inflammatory mediators in osteoarthritis[J]. Osteoarthritis Cartilage, 2023, 31(10): 1303-1311. DOI: 10.1016/j.joca.2023.06.005.
17.Hu W, Chen Y, Dou C, et al. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis[J]. Ann Rheum Dis, 2021, 80(4): 413-422. DOI: 10.1136/annrheumdis-2020-218089.
18.Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance[J]. Cell Sci, 2012, 125(3): 531-537. DOI: 10.1242/jcs.091777.
19.Song MS, Pandolfi PP. The HECT family of E3 ubiquitin ligases and PTEN[J]. Semin Cancer Biol, 2022, 85: 43-51. DOI: 10.1016/j.semcancer.2021.06.012.
20.Wang ZW, Hu X, Ye M, et al. NEDD4 E3 ligase: functions and mechanism in human cancer[J]. Semin Cancer Biol, 2020, 67(Pt 2): 92-101. DOI: 10.1016/j.semcancer.2020.03.006.
21.Staub O, Dho S, Henry P, et al. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome[J]. EMBO J, 1996, 15(10): 2371-2380. https://pubmed.ncbi.nlm.nih.gov/8665844/
22.Vecchione A, Marchese A, Henry P, et al. The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor[J]. Mol Cell Biol, 2003, 23(9): 3363-3372. DOI: 10.1128/MCB.23.9.3363-3372.2003.
23.Platta HW, Abrahamsen H, Thoresen SB, et al. Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1[J]. Biochem J, 2012, 441(1): 399-406. DOI: 10.1042/BJ20111424.
24.Wang Y, Wu Z, Wang C, et al. The role of WWP1 and WWP2 in bone/cartilage development and diseases[J]. Mol Cell Biochem, 2024, 479(11): 2907-2919. DOI: 10.1007/s11010-023-04917-7.
25.Lin Z, Miao J, Zhang T, et al. JUNB-FBXO21-ERK axis promotes cartilage degeneration in osteoarthritis by inhibiting autophagy[J]. Aging Cell, 2021, 20(2): e13306. DOI: 10.1111/acel.13306.
26.Wu Q, Huang JH, Sampson ER, et al. Smurf2 induces degradation of GSK-3beta and upregulates beta-catenin in chondrocytes: a potential mechanism for Smurf2-induced degeneration of articular cartilage[J]. Exp Cell Res, 2009, 315(14): 2386-2398. DOI: 10.1016/j.yexcr.2009.05.019.
27.Flasza M, Gorman P, Roylance R, et al. Alternative splicing determines the domain structure of WWP1, a Nedd4 family protein[J]. Biochem Biophys Res Commun, 2002, 290(1): 431-437. DOI: 10.1006/bbrc.2001.6206.
28.Zhi X, Chen C. WWP1: a versatile ubiquitin E3 ligase in signaling and diseases[J]. Cell Mol Life Sci, 2012, 69(9): 1425-1434. DOI: 10.1007/s00018-011-0871-7.
29.Wang B, Zhong JL, Jiang N, et al. Exploring the mystery of osteoarthritis using bioinformatics analysis of cartilage tissue[J]. Comb Chem High Throughput Screen, 2022, 25(1): 53-63. DOI: 10.2174/1386207323666201207100905.
30.Shu L, Zhang H, Boyce BF, et al. Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration[J]. J Bone MinerRes, 2013, 28(9): 1925-1935. DOI: 10.1002/jbmr.1938.
31.Huang Y, Xu Y, Feng S, et al. miR-19b enhances osteogenic differentiation of mesenchymal stem cells and promotes fracture healing through the WWP1/Smurf2-mediated KLF5/β-catenin signaling pathway[J]. Exp Mol Med, 2021, 53(5): 973-985. DOI: 10.1038/s12276-021-00631-w.
32.Wang Y, Malcolm DW, Benoit DSW. Controlled and sustained delivery of siRNA/NPsfrom hydrogels expedites bone fracture healing[J]. Biomaterials, 2017, 139: 127-138. DOI: 10.1016/j.biomaterials.2017.06.001.
33.Saito T, Tanaka S. Molecular mechanisms underlying osteoarthritis development: notchand NF-κB[J]. Arthritis Res Ther, 2017, 19(1): 94. DOI: 10.1186/s13075-017-1296-y.
34.Flasza M, Nguyen Huu NS, Mazaleyrat S, et al. Regulation of the nuclear localization of the human Nedd4-related WWP1 protein by Notch[J]. Mol Membr Biol, 2006, 23(3): 269-276. DOI: 10.1080/09687860600665010.
35.You S, Xu J, Guo Y, et al. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases[J]. Mol Aspects Med, 2024, 96: 101257. DOI: 10.1016/j.mam.2024.101257.
36.Nakamura Y, Yamamoto K, He X, et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25[J]. Nat Commun, 2011, 2: 251. DOI: 10.1038/ncomms1242.
37.Gao F, Yao Y, Zhang Y, et al. Integrating genome-wide association studies with pathway analysis and gene expression analysis highlights novel osteoarthritis risk pathways and genes[J]. Front Genet, 2019, 10: 827. DOI: 10.3389/fgene.2019.00827.
38.Mokuda S, Nakamichi R, Matsuzaki T, et al. Wwp2 maintains cartilage homeostasis through regulation of Adamts5[J]. Nat Commun, 2019, 10(1): 2429. DOI: 10.1038/s41467-019-10177-1.
39.Tuerlings M, Janssen GMC, Boone I, et al. WWP2 confers risk to osteoarthritis by affecting cartilage matrix deposition via hypoxia associated genes[J]. Osteoarthritis Cartilage, 2023, 31(1): 39-48. DOI: 10.1016/j.joca.2022.09.009.
40.Yin Q, Wyatt CJ, Han T, et al. ITCH as a potential therapeutic target in human cancers[J]. Semin Cancer Biol, 2020, 67(Pt 2): 117-130. DOI: 10.1016/j.semcancer.2020.03.003.
41.Kathania M, Khare P, Zeng M, et al. Itch inhibits IL-17-mediated colon inflammationand tumorigenesis by ROR-γt ubiquitination[J]. Nat Immunol, 2016, 17(8): 997-1004. DOI: 10.1038/ni.3488.
42.Ahmed N, Zeng M, Sinha I, et al. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation[J]. Nat Immunol, 2011, 12(12): 1176-1183. DOI: 10.1038/ni.2157.
43.Lin X, Wang W, McDavid A, et al. The E3 ubiquitin ligase Itch limits the progression of post-traumatic osteoarthritis in mice by inhibiting macrophage polarization[J]. Osteoarthritis Cartilage, 2021, 29(8): 1225-1236. DOI: 10.1016/j.joca.2021.04.009.
44.Qi L, Wang M, He J, et al. E3 ubiquitin ligase ITCH improves LPS-induced chondrocyte injury by mediating JAG1 ubiquitination in osteoarthritis[J]. Chem Biol Interact, 2022, 360: 109921. DOI: 10.1016/j.cbi.2022.109921.
45.Xing LP, Zhang M, Chen D. Smurf control in bone cells[J]. J Cell Biochem, 2010, 110(3): 554-563. DOI: 10.1002/jcb.22586.
46.Yamashita M, Ying SX, Zhang GM, et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation[J]. Cell, 2005, 121(1): 101-113. DOI: 10.1016/j.cell.2005.01.035.
47.Schminke B, Kauffmann P, Schubert A, et al. Smurf1 and Smurf2 in progenitor cells from articular cartilage and meniscus during late-stage osteoarthritis[J]. Cartilage, 2021, 13(2_suppl): 117S-128S. DOI: 10.1177/1947603520967069.
48.Singh PNP, Shea CA, Sonker SK, et al. Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement[J]. Development, 2018, 145(5): dev153460. DOI: 10.1242/dev.153460.
49.Jaswal AP, Kumar B, Roelofs AJ, et al. BMP signaling: a significant player and therapeutic target for osteoarthritis[J]. Osteoarthritis Cartilage, 2023, 31(11): 1454-1468. DOI: 10.1016/j.joca.2023.05.016.
50.Wu Q, Kim KO, Sampson ER, et al. Induction of an osteoarthritis-like phenotype and degradation of phosphorylated Smad3 by Smurf2 in transgenic mice[J]. Arthritis Rheum, 2008, 58(10): 3132-3144. DOI: 10.1002/art.23946.
51.Huang H, Veien ES, Zhang H, et al. Skeletal characterization of Smurf2-deficient mice and in vitro analysis of SMURF2-deficient chondrocytes[J]. PLoS One, 2016, 11(1): e0148088. DOI: 10.1371/journal.pone.0148088.
52.Zheng W, Hou GH, Li Y. Circ_0116061 regulated the proliferation, apoptosis, and inflammation of osteoarthritis chondrocytes through regulating the miR-200b-3p/Smurf2 axis[J]. J Orthop Surg Res, 2021, 16(1): 253. DOI: 10.1186/s13018-021-02391-9.
Popular Papers
-
Prediction and analysis of disease burden of mental disorders in China from 1990 to 2021
Jan. 25, 20252780
-
Analysis of the effect of dietary factors on irritable bowel syndrome by Mendelian randomized method
Apr. 25, 20252620
-
Construction of a depression risk prediction model for elderly individuals living alone with chronic diseases in China
Dec. 28, 20242237
-
The analysis of disease burden of benign prostatic hyperplasia in China from 1990 to 2021
Dec. 28, 20242235
-
Interpretation of Specification for Developing Clinical Practice Guidelines of Organic Integration of Traditional Chinese and Western Medicine
Dec. 28, 20241876
-
Prevalence and influencing factors of non-suicidal self-injurious behaviour among Chinese college students: a Meta-analysis
Jan. 25, 20251867
-
Methodology for evidence-based urology——evidence classification and retrieval
Jan. 25, 20251808
-
Construction of a predictive model for the risk of aspiration in enteral nutrition patients in ICU
Jan. 25, 20251793