Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress on the transition metchansim of metastatic hormone-sensitive prostate cancer to metastatic castration-resistant prostate cancer

Published on Feb. 25, 2025Total Views: 23 timesTotal Downloads: 11 timesDownloadMobile

Author: MAO Yun YANG Jie JIN Kun LI Qing LI Shuren LI Wenze

Affiliation: Department of Urology, The First People’s Hospital of Xiangtan City, Xiangtan 411100, Hunan Province, China

Keywords: Metastatic prostate cancer Castration-resistance Androgen receptor Signal pathway Non-coding RNAs Immunomodulation Epigenetic modification

DOI: 10.12173/j.issn.1004-5511.202409157

Reference: Mao Y, Yang J, Jin K, Li Q, Li SR, Li WZ. Research progress on the transition metchansim of metastatic hormone-sensitive prostate cancer to metastatic castration-resistant prostate cancer[J]. Yixue Xinzhi Zazhi, 2025, 35(2): 222-231. DOI: 10.12173/j.issn.1004-5511.202409157.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

By the time prostate cancer is diagnosed, most cases have metastasized. Androgen-deprivation therapy is an effective means of treating metastatic hormone-sensitive prostate cancer (mHSPC), but most patients eventually develop to metastatic castration-resistant prostate cancer (mCRPC). The mechanisms regulating the progression of mCRPC are still unclear, and androgen receptor (AR) signaling has been shown to play an important role in mCRPC through AR gene mutations, overexpression, co-regulatory factors, AR splice variants, and androgen resynthesis. A growing number of non-AR pathways have also been shown to affect the progression of mCRPC, including the Wnt and Hedgehog pathways. In addition, non-coding RNAs, immune related mechanisms and epigenetic modifications also play important roles in the pathogenesis of mCRPC. This article reviewed the relevant transition mechanism of mHSCP to mCRPC, in order to provide reference for related research.

Full-text
Please download the PDF version to read the full text: download
References

1.中国前列腺癌研究协作组. 前列腺癌药物去势治疗随访管理中国专家共识(2024版)[J]. 中华肿瘤杂志, 2024, 46(4): 285-295. [Chinese Prostate Cancer Consortium. Chinese expert consensus on the follow-up management of patients with prostate cancer receiving medical castration therapy (2024 edition) [J]. Chinese Journal of Oncology, 2024, 46(4): 285-295.] DOI: 10.3760/cma.j.cn112152-20240206-00067.

2.Wang F, Wang C, Xia H, et al. Burden of prostate cancer in China, 1990-2019: findings from the 2019 Global Burden of Disease Study[J]. Front Endocrinol (Lausanne), 2022, 13: 853623. DOI: 10.3389/fendo.2022.853623.

3.Morote J, Aguilar A, Planas J, et al. Definition of castrate resistant prostate cancer: new insights[J]. Biomedicines, 2022, 10(3): 689. DOI: 10.3390/biomedicines10030689.

4.Van-Duyne G, Blair IA, Sprenger C, et al. The androgen receptor[J]. Vitam Horm, 2023, 123: 439-481. DOI: 10.1016/bs. vh.2023.01.001.

5.Yang M, Li JC, Tao C, et al. PAQR6 upregulation is associated with AR signaling and unfavorite prognosis in prostate cancers[J].Biomolecules, 2021, 11(9): 1383. DOI: 10.3390/biom11091383.

6.Crowley F, Sterpi M, Buckley C, et al. A review of the pathophysiological mechanisms underlying castration-resistant prostate cancer[J]. Res Rep Urol, 2021, 13: 457-472. DOI: 10.2147/rru.S264722.

7.Ratajczak W, Lubkowski M, Lubkowska A. Heat shock proteins in benign prostatic hyperplasia and prostate cancer[J]. Int J Mol Sci, 2022, 23(2): 897. DOI: 10.3390/ijms23020897.

8.Gu Y, Wu S, Chong Y, et al. DAB2IP regulates intratumoral testosterone synthesis and CRPC tumor growth by ETS1/AKR1C3 signaling[J]. Cell Signal, 2022, 95: 110336. DOI: 10.1016/j.cellsig. 2022.110336.

9.Nishiyama T, Ikarashi T, Hashimoto Y, et al. The change in the dihydrotestosterone level in the prostate before and after androgen deprivation therapy in connection with prostate cancer aggressiveness using the Gleason score[J]. J Urol, 2007, 178(4 Pt 1): 1282-1288. DOI: 10.1016/j.juro.2007.05.138.

10.Xu Z, Ma T, Zhou J, et al. Nuclear receptor ERRα contributes to castration-resistant growth of prostate cancer via its regulation of intratumoral androgen biosynthesis[J]. Theranostics, 2020, 10(9): 4201-4216. DOI: 10.7150/thno.35589.

11.Pretorius E, Africander DJ, Vlok M, et al. 11-Ketotestosterone and 11-Ketodihydrotestosterone in castration resistant prostate cancer: potent androgens which can no longer be ignored[J]. PLoS One, 2016, 11(7): e0159867. DOI: 10.1371/journal.pone.0159867.

12.De Silva D, Zhang Z, Liu Y, et al. Interaction between androgen receptor and coregulator SLIRP is regulated by Ack1 tyrosine kinase and androgen[J]. Sci Rep, 2019, 9(1): 18637. DOI: 10.1038/s41598-019-55057-2.

13.Purayil HT, Zhang Y, Black JB, et al. Nuclear βArrestin1 regulates androgen receptor function in castration resistant prostate cancer[J]. Oncogene, 2021, 40(14): 2610-2620. DOI: 10.1038/s41388-021-01730-8.

14.Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review[J]. World J Mens Health, 2019, 37(3): 288-295. DOI: 10.5534/wjmh.180040.

15.Zhang Z, Connolly PJ, Lim HK, et al. Discovery of JNJ-63576253: a clinical stage androgen receptor antagonist for F877L mutant and wild-type castration-resistant prostate cancer (mCRPC)[J]. J Med Chem, 2021, 64(2): 909-924. DOI: 10.1021/acs.jmedchem. 0c01563.

16.Messner EA, Steele TM, Tsamouri MM, et al. The androgen receptor in prostate cancer: effect of structure, ligands and spliced variants on therapy[J]. Biomedicines, 2020, 8(10): 422. DOI: 10.3390/biomedicines8100422.

17.Nagandla H, Robertson MJ, Putluri V, et al. Isoform-specific activities of androgen receptor and its splice variants in prostate cancer cells[J]. Endocrinology, 2021, 162(3): bqaa227. DOI: 10.1210/endocr/bqaa227.

18.Simon I, Perales S, Casado-medina L, et al. Cross-resistance to abiraterone and enzalutamide in castration resistance prostate cancer cellular models is mediated by AR transcriptional reactivation[J]. Cancers (Basel), 2021, 13(6): 1483. DOI: 10.3390/cancers13061483.

19.Liu G, Sprenger C, Sun S, et al. AR variant ARv567es induces carcinogenesis in a novel transgenic mouse model of prostate cancer[J]. Neoplasia, 2013, 15(9): 1009-1017. DOI: 10.1593/neo. 13784.

20.Mimeault M, Rachagani S, Muniyan S, et al. Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer[J]. Oncotarget, 2015, 6(6): 3887-3903. DOI: 10.18632/oncotarget.2932.

21.Li Q, Alsaidan OA, Rai S, et al. Stromal Gli signaling regulates the activity and differentiation of prostate stem and progenitor cells[J]. J Biol Chem, 2018, 293(27): 10547-10560. DOI: 10.1074/jbc.RA118.003255.

22.Shen YA, Pan SC, Chu I, et al. Targeting cancer stem cells from a metabolic perspective[J]. Exp Biol Med (Maywood), 2020, 245(5): 465-476. DOI: 10.1177/1535370220909309.

23.Burleson M, Deng JJ, Qin T, et al. GLI3 is stabilized by SPOP Mutations and promotes castration resistance via functional cooperation with androgen receptor in prostate cancer[J]. Mol Cancer Res, 2022, 20(1): 62-76. DOI: 10.1158/1541-7786.Mcr-21-0108.

24.Kwan EM, Dai C, Fettke H, et al. Plasma cell-free DNA profiling of PTEN-PI3K-AKT pathway aberrations in metastatic castration-resistant prostate cancer[J]. JCO Precis Oncol, 2021, 5: PO.20.00424. DOI: 10.1200/po.20.00424.

25.Shorning BY, Dass MS, Smalley MJ, et al. The PI3K-AKT-mTOR pathway and prostate cancer: at the crossroads of AR, MAPK, and WNT signaling[J]. Int J Mol Sci, 2020, 21(12): 4507. DOI: 10.3390/ijms21124507.

26.Zi X, Guo Y, Simoneau AR, et al. Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness[J]. Cancer Res, 2005, 65(21): 9762-9770. DOI: 10.1158/0008-5472.Can-05-0103.

27.Koushyar S, Meniel VS, Phesse TJ, et al. Exploring the Wnt pathway as a therapeutic target for prostate cancer[J]. Biomolecules, 2022, 12(2): 309. DOI: 10.3390/biom12020309.

28.Lee E, Ha S, Logan SK. Divergent androgen receptor and beta-catenin signaling in prostate cancer cells[J]. PLoS One, 2015, 10(10): e0141589. DOI: 10.1371/journal.pone.0141589.

29.Korinek V, Barker N, Morin PJ, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma[J]. Science, 1997, 275(5307): 1784-1787. DOI: 10.1126/science.275.5307.1784.

30.Minami Y, Oishi I, Endo M, et al. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases[J]. Dev Dyn, 2010, 239(1): 1-15. DOI: 10.1002/dvdy.21991.

31.Tzavlaki K, Moustakas A. TGF-β signaling[J]. Biomolecules, 2020, 10(3): 487. DOI: 10.3390/biom10030487.

32.Li X, Placencio V, Iturregui JM, et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis[J]. Oncogene, 2008, 27(56): 7118-7130. DOI: 10.1038/onc. 2008.293.

33.谢国平. 非编码RNAs在去势抵抗性前列腺癌中的研究进展 [J]. 中华男科学杂志, 2015, 21(11): 1014-1019. [Xie  GP. Non-coding RNAs in castration-resistant prostate cancer[J]. National Journal of Andrology, 2015, 21(11): 1014-1019.] DOI: 10.13263/j.cnki.nja.2015.11.012.

34.Guo T, Wang Y, Jia J, et al. The identification of plasma exosomal miR-423-3p as a potential predictive biomarker for prostate cancer castration-resistance development by plasma exosomal miRNA sequencing[J]. Front Cell Dev Biol, 2021, 8: 602493. DOI: 10.3389/fcell.2020.602493.

35.Lo UG, Lee CF, Lee MS, et al. The role and mechanism of epithelial-to-mesenchymal transition in prostate cancer progression[J]. Int J Mol Sci, 2017, 18(10): 2079. DOI: 10.3390/ijms18102079.

36.Sikand K, Slaibi JE, Singh R, et al. miR 488* inhibits androgen receptor expression in prostate carcinoma cells[J]. Int J Cancer, 2011, 129(4): 810-819. DOI: 10.1002/ijc.25753.

37.Sowalsky AG, Xia Z, Wang L, et al. Whole transcriptome sequencing reveals extensive unspliced mRNA in metastatic castration-resistant prostate cancer[J]. Mol Cancer Res, 2015, 13(1): 98-106. DOI: 10.1158/1541-7786.MCR-14-0273.

38.Zhang B, Zhang M, Shen C, et al. LncRNA PCBP1-AS1-mediated AR/AR-V7 deubiquitination enhances prostate cancer enzalutamide resistance[J]. Cell Death Dis, 2021, 12(10): 856. DOI: 10.1038/s41419-021-04144-2.

39.You Z, Liu C, Wang C, et al. LncRNA CCAT1 promotes prostate cancer cell proliferation by interacting with DDX5 and MIR-28-5P[J]. Mol Cancer Ther, 2019, 18(12): 2469-2479. DOI: 10.1158/1535-7163.Mct-19-0095.

40.Kumar R. Emerging role of glucocorticoid receptor in castration resistant prostate cancer: a potential therapeutic target[J]. J Cancer, 2020, 11(3): 696-701. DOI: 10.7150/jca.32497.

41.Arora VK, Schenkein E, Murali R, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade[J]. Cell, 2013, 155(6): 1309-1322. DOI: 10.1016/j.cell.2013.11.012.

42.Hoshi S, Meguro S, Imai H, et al. Upregulation of glucocorticoid receptor-mediated glucose transporter 4 in enzalutamide-resistant prostate cancer[J]. Cancer Sci, 2021, 112(5): 1899-1910. DOI: 10.1111/cas.14865.

43.Purayil HT, Daaka Y. βArrestin1 regulates glucocorticoid receptor mitogenic signaling in castration-resistant prostate cancer[J]. Prostate, 2022, 82(7): 816-825. DOI: 10.1002/pros.24324.

44.Chakraborty G, Patail NK, Hirani R, et al. Attenuation of SRC kinase activity augments PARP inhibitor-mediated synthetic lethality in BRCA2-altered prostate tumors[J]. Clin Cancer Res, 2021, 27(6): 1792-1806. DOI: 10.1158/1078-0432.Ccr-20-2483.

45.Shi Q, Zhu Y, Ma J, et al. Prostate cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly[J]. Mol Cancer, 2019, 18(1): 170. DOI: 10.1186/s12943-019-1096-x.

46.Boysen G, Rodrigues DN, Rescigno P, et al. SPOP-mutated/CHD1-deleted lethal prostate cancer and abiraterone sensitivity[J]. Clin Cancer Res, 2018, 24(22): 5585-5593. DOI: 10.1158/1078-0432.Ccr-18-0937.

47.Pulanco MC, Madsen AT, Tanwar A, et al. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies[J]. Cell Mol Immunol, 2023, 20(7): 694-713. DOI: 10.1038/s41423-023-01019-8.

48.Lu MM, Yang Y. Exosomal PD-L1 in cancer and other fields: recent advances and perspectives[J]. Front Immunol, 2024, 15: 1395332. DOI: 10.3389/fimmu.2024.1395332.

49.Fan Z, Wu C, Chen M, et al. The generation of PD-L1 and PD-L2 in cancer cells: from nuclear chromatin reorganization to extracellular presentation[J]. Acta Pharm Sin B, 2022, 12(3): 1041-1053. DOI: 10.1016/j.apsb.2021.09.010.

50.Dong S, Guo X, Han F, et al. Emerging role of natural products in cancer immunotherapy[J]. Acta Pharm Sin B, 2022, 12(3): 1163-1185. DOI: 10.1016/j.apsb.2021.08.020.

51.Gevensleben H, Dietrich D, Golletz C, et al. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer[J]. Clin Cancer Res, 2016, 22(8): 1969-1977. DOI: 10.1158/1078-0432.Ccr-15-2042.

52.Ebelt K, Babaryka G, Frankenberger B, et al. Prostate cancer lesions are surrounded by FOXP3+, PD-1+ and B7-H1+ lymphocyte clusters[J]. Eur J Cancer, 2009, 45(9): 1664-1672. DOI: 10.1016/j.ejca.2009.02.015.

53.Bishop JL, Sio A, Angeles A, et al. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer[J]. Oncotarget, 2015, 6(1): 234-242. DOI: 10.18632/oncotarget.2703.

54.Saito T, Nishikawa H, Wada H, et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers[J]. Nat Med, 2016, 22(6): 679-684. DOI: 10.1038/nm.4086.

55.Watanabe M, Kanao K, Suzuki S, et al. Increased infiltration of CCR4-positive regulatory T cells in prostate cancer tissue is associated with a poor prognosis[J]. Prostate, 2019, 79(14): 1658-1665. DOI: 10.1002/pros.23890.

56.Shikanai S, Yamada N, Yanagawa N, et al. Prognostic impact of tumor-associated macrophage-related markers in patients with adenocarcinoma of the lung[J]. Ann Surg Oncol, 2023, 30(12): 7527-7537. DOI: 10.1245/s10434-023-13384-9.

57.Larionova I, Tuguzbaeva G, Ponomaryova A, et al. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers[J]. Front Oncol, 2020, 10: 566511. DOI: 10.3389/fonc.2020.566511.

58.Lissbrant IF, Stattin P, Wikstrom P, et al. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival[J]. Int J Oncol, 2000, 17(3): 445-451. DOI: 10.3892/ijo.17.3.445.

59.Sugiura M, Sato H, Kanesaka M, et al. Epigenetic modifications in prostate cancer[J]. Int J Urol, 2021, 28(2): 140-149. DOI: 10.1111/iju.14406.

60.Takayama K, Misawa A, Suzuki T, et al. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression[J]. Nat Commun, 2015, 6: 8219. DOI: 10.1038/ncomms9219.

61.Mahon KL, Qu W, Devaney J, et al. Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer[J]. Br J Cancer, 2014, 111(9): 1802-1809. DOI: 10.1038/bjc.2014.463.

62.Zhao SG, Chen WS, Li H, et al. The DNA methylation landscape of advanced prostate cancer[J]. Nat Genet, 2020, 52(8): 778-789. DOI: 10.1038/s41588-020-0648-8.

63.Liang Y, Ahmed M, Guo H, et al. LSD1-mediated epigenetic reprogramming drives CENPE expression and prostate cancer progression[J]. Cancer Res, 2017, 77(20): 5479-5490. DOI: 10.1158/0008-5472.Can-17-0496.

64.Sehrawat A, Gao L, Wang Y, et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function[J].Proc Natl Acad Sci U S A, 2018, 115(18): E4179-E4188. DOI: 10.1073/pnas.1719168115.

65.Wen S, He Y, Wang L, et al. Aberrant activation of super enhancer and choline metabolism drive antiandrogen therapy resistance in prostate cancer[J]. Oncogene, 2020, 39(42): 6556-6571. DOI: 10.1038/s41388-020-01456-z.

66.Weichert W, Röske A, Gekeler V, et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy[J]. Br J Cancer, 2008, 98(3): 604-610. DOI: 10.1038/sj.bjc.6604199.