Welcome to visit Zhongnan Medical Journal Press Series journal website!

A systematic review of risk prediction models for post-stroke acute kidney injury

Published on May. 25, 2025Total Views: 50 timesTotal Downloads: 13 timesDownloadMobile

Author: YANG Li 1 QIN Qin 1 LIU Handan 1, 2 LI Huiming 1 WEI Xuemei 1 CUI Lijun 2, 3

Affiliation: 1. Department of Nursing, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China 2. Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China 3. Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China

Keywords: Stroke Acute kidney injury Prediction model Risk Systematic review

DOI: 10.12173/j.issn.1004-5511.202411047

Reference: Yang L, Qin Q, Liu HT, Li HM, Wei XM, Cui LJ. A systematic review of risk prediction models for post-stroke acute kidney injury[J]. Yixue Xinzhi Zazhi, 2025, 35(5): 562-571. DOI: 10.12173/j.issn.1004-5511.202411047. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To systematically evaluate the risk prediction model for acute kidney injury (AKI) after stroke.

Methods  Studies on post-stroke AKI risk prediction models from PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wanfang, VIP, and Chinese Biomedical Literature Database were searched from inception to December 23, 2024. The Prediction Model Risk of Bias Assessment Tool (PROBAST) were used to evaluate the bias and applicability of studies, and descriptive methods were used to analyze model characteristics.

Results  A total of 15 studies were included, including 33 predictive models. 11 studies (73.3%) used Logistic regression models to construct predictive models, 6 studies (40.0%) selected predictive factors based on single factor analysis, 3 studies (20.0%) did not report methods for handling missing data, 14 studies (93.3%) presented predictive models through column charts, risk scoring scales, and regression equations. The common predictive factors included in the models included age, hypertension, serum creatinine, blood urea nitrogen, use of diuretics. 11 studies (73.3%) were internally validated, and 7 studies (46.7%) were externally validated. Among the 33 models, 26 models reported the area under the curve of the receiver operating characteristic curve, and 13 models (39.4%) were evaluated for calibration using calibration curves or Hosmer-Lemeshow goodness of fit tests. All included studies had a high risk of bias, and 11 studies had good applicability.

Conclusion  The quality of the modeling methodology for AKI risk prediction models after stroke is uneven, and the overall risk of bias is high. In the future, the development quality of prediction models should be further improved by following PROBAST standards and TRIPOD reporting standards.

Full-text
Please download the PDF version to read the full text: download
References

1.GBD 2021 Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Neurol, 2024, 23(10): 973-1003. DOI: 10.1016/S1474-4422(24)00369-7.

2.Chen X, Yang DX, Zhao H, et al. Stroke-induced renal dysfunction: underlying mechanisms and challenges of the brain-kidney axis[J]. CNS Neurosci Ther, 2024, 30(11): e70114. DOI: 10.1111/cns.70114.

3.Battaglini D, De Rosa S, Godoy DA. Crosstalk between the nervous system and systemic organs in acute brain injury[J]. Neurocrit Care, 2024, 40(1): 337-348. DOI: 10.1007/s12028-023-01725-1.

4.Huang Y, Wan CJ, Wu GQ. Acute kidney injury after a stroke: a PRISMA-compliant Meta-analysis[J]. Brain Behav, 2020, 10(9): e01722. DOI: 10.1002/brb3.1722.

5.Arora S, Agrawal A, Vishnu VY, et al. Navigating the nexus: acute kidney injury in acute stroke-a prospective cohort study[J]. Ann Indian Acad Neurol, 2024, 27(4): 384-392. DOI: 10.4103/aian.aian_177_24.

6.王晓雯,肖统领,王祎,等. 急性缺血性脑卒中患者同型半胱氨酸水平与急性肾损伤的关系研究[J]. 中国全科医学, 2023, 26(26): 3290-3296. [Wang XW, Xiao TL, Wang  Y, et al. Relationship between homocysteine level and acute kidney injury in patients with acute ischemic stroke[J]. Chinese General Practice, 2023, 26(26): 3290-3296.] DOI: 10.12114/j.issn.1007-9572.2022.0899.

7.Kamran A, Paryani NS, Suri NF, et al. Incidence of acute kidney injury in patients with acute ischaemic stroke undergoing CT angiography (CTA) and CT perfusion (CTP): a systematic review and Meta-analysis[J]. BMJ Neurol Open, 2024, 6(1): e000558. DOI: 10.1136/bmjno-2023-000558.

8.Zorrilla-Vaca A, Ziai W, Connolly ES Jr, et al. Acute kidney injury following acute ischemic stroke and intracerebral hemorrhage: a Meta-analysis of prevalence rate and mortality risk[J]. Cerebrovasc Dis, 2018, 45(1-2): 1-9. DOI: 10.1159/000479338.

9.Arnold J, Ng KP, Sims D, et al. Incidence and impact on outcomes of acute kidney injury after a stroke: a systematic review and Meta-analysis[J]. BMC Nephrol, 2018, 19(1): 283. DOI: 10.1186/s12882-018-1085-0.

10.De Rubeis G, Alessiani M, Fabiano S, et al. Impact on mortality at 90 days of acute kidney injuries in endovascularly treated stroke: a systematic review, Meta-analysis, and meta-regression[J]. Neuroradiol J, 2025, 38(2): 185-191. DOI: 10.1177/19714009241303134.

11.Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist[J]. PLoS Med, 2014, 11(10): e1001744. DOI: 10.1371/journal.pmed.1001744.

12.Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med, 2019, 170(1): W1-W33. DOI: 10.7326/M18-1377.

13.陈茹, 王胜锋, 周家琛, 等. 预测模型研究的偏倚风险和适用性评估工具解读[J]. 中华流行病学杂志, 2020, 41(5): 776-781. [Chen R, Wang SF, Zhou JC, et al. Introduction of the prediction model risk of bias assessment tool: a tool to assess risk of bias and applicability of prediction model studies[J]. Chinese Journal of Epidemiology, 2020, 41(5): 776-781.] DOI: 10.3760/cma.j.cn112338-20190805-00580.

14.Kim MY, Park JH, Kang NR, et al. Increased risk of acute kidney injury associated with higher infusion rate of mannitol in patients with intracranial hemorrhage[J]. J Neurosurg, 2014, 120(6): 1340-1348. DOI: 10.3171/2013.12.JNS13888.

15.饶艳, 姚梅琪, 江大为, 等. 脑卒中后发生急性肾损伤风险预测模型的构建及验证[J]. 中国全科医学, 2022, 25(23): 2885-2891. [Rao Y, Yao MQ, Jiang DW, et al. Development and validation of a risk prediction model of post-stroke acute kidney injury[J]. Chinese General Practice, 2022, 25(23): 2885-2891.] DOI: 10.12114/j.issn.1007-9572.2022.0246.

16.Zhang XH, Chen SY, Lai KM, et al. Machine learning for the prediction of acute kidney injury in critical care patients with acute cerebrovascular disease[J]. Ren Fail, 2022, 44(1): 43-53. DOI: 10.1080/0886022X.2022.2036619.

17.Liu SY, Li M, Yang YX, et al. A novel risk model based on white blood cell-related biomarkers for acute kidney injury prediction in patients with ischemic stroke admitted to the intensive care unit[J]. Front Med (Lausanne), 2022, 9: 1043396. DOI: 10.3389/fmed.2022.1043396.

18.Zhu GG, Fu ZX, Jin TA, et al. Dynamic nomogram for predicting acute kidney injury in patients with acute ischemic stroke: a retrospective study[J]. Front Neurol, 2022, 13: 987684. DOI: 10.3389/fneur.2022.987684.

19.刘张波, 葛中林, 刘珊, 等. 急性脑梗死患者并发急性肾损伤的影响因素及其风险预测列线图模型构建[J]. 实用心脑肺血管病杂志, 2023, 31(11): 16-19, 24. [Liu ZB, Ge ZL, Liu  S, et al. Influencing factors of acute kidney injury in patients with acute cerebral infarction and construction of nomogram model for predicting its risk[J]. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2023, 31(11): 16-19, 24.] DOI: 10.12114/j.issn. 1008-5971.2023.00.297.

20.张佳琪, 管陈, 李宸羽, 等. 急性缺血性脑卒中患者急性肾损伤发生的危险因素分析及Nomogram预测模型的构建 [J]. 精准医学杂志, 2023, 38(2): 129-134. [Zhang JQ, Guan C, Li  CY, et al. Risk fzctors for acute kindey injury inpatients with acute ischemic stroke and construction of a nomogram predictive model[J]. Journal of Precision Medicine, 2023, 38(2): 129-134.] DOI: 10.13362/j.jpmed.202302008.

21.Tian YX, Zhang Y, He JL, et al. Predictive model of acute kidney injury after spontaneous intracerebral hemorrhage: a multicenter retrospective study[J]. Eur Stroke J, 2023, 8(3): 747-755. DOI: 10.1177/23969873231184667.

22.She SH, Shen YL, Luo K, et al. Prediction of acute kidney injury in intracerebral hemorrhage patients using machine learning[J]. Neuropsychiatr Dis Treat, 2023, 19: 2765-2773. DOI: 10.2147/NDT.S439549.

23.安贝贝, 徐艳, 张健煜, 等. 年轻和中老年急性缺血性卒中患者急性肾损伤预测模型的构建和验证[J]. 国际脑血管病杂志, 2023, 31(11): 815-823. [An BB, Xu Y, Zhang JY, et  al. Development and validation of a predictive model for acute kidney injury in young, middle-aged and elderly patients with acute ischemic stroke[J]. International Journal of Cerebrovascular Diseases, 2023, 31(11): 815-823.] DOI: 10.3760/cma.j.issn. 1673-4165.2023.11.003.

24.Ma BQ, Jin GY, Mao FK, et al. Development of a nomogram to predict the incidence of acute kidney injury among ischemic stroke individuals during ICU hospitalization[J]. Heliyon, 2024, 10(3): e25566. DOI: 10.1016/j.heliyon.2024.e25566.

25.贺剑绗, 李仁, 郭庚. 重症脑出血病人发生急性肾损伤的列线图模型建立与验证[J]. 中西医结合心脑血管病杂志, 2024, 22(8): 1509-1516. [He JH, Li R, Guo G. Establishment and verification of nomogram model of acute kidney injury in patients with severe cerebral hemorrhage[J]. Chinese Journal of Integrative Medicine on Cardio/Cerebrovascular Disease, 2024, 22(8): 1509-1516.] DOI: 10.12102/j.issn.1672-1349.2024.08.032.

26.薛景, 陈大伟, 万辛. 急性缺血性脑卒中后急性肾损伤预测模型的构建[J]. 临床肾脏病杂志, 2024, 24(6): 475-483. [Xue  J, Chen DW, Wan X. Construction of a predictive model for acute kidney injury after acute ischemic stroke[J]. Journal of Clinical Nephrology, 2024, 24(6): 475-483.] DOI: 10.3969/j.issn.1671-2390.2024. 06.006.

27.肖增丽, 杜安琪, 孙瑶, 等. 脑出血术后AKI发生的危险因素分析及预测模型建立[J]. 中华重症医学电子杂志, 2024, 10(2): 157-163. [Xiao ZL, Du AQ, Sun Y, et al. Risk factors analysis and nomogram establishment for patients developing AKI after intracerebral hemorrhage surgery[J]. Chinese Journal of Critical Care & Intensive Care Medicine (Electronic Edition), 2024, 10(2): 157-163.] DOI: 10.3877/cma.j.issn.2096-1537. 2024.02.010.

28.Lu XC, Chen Y, Zhang GP, et al. Application of interpretable machine learning algorithms to predict acute kidney injury in patients with cerebral infarction in ICU[J]. J Stroke Cerebrovasc Dis, 2024, 33(7): 107729. DOI: 10.1016/j.jstrokecerebrovasdis.2024.107729.

29.Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement[J]. Eur Urol, 2015, 67(6): 1142-1151. DOI: 10.1016/j.eururo.2014.11.025.

30.Hoesseini A, van Leeuwen N, Sewnaik A, et al. Key aspects of prognostic model development and interpretation from a clinical perspective[J]. JAMA Otolaryngol Head Neck Surg, 2022, 148(2): 180-186. DOI: 10.1001/jamaoto.2021.3505.

31.Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration[J]. Ann Intern Med, 2019, 170(1): W1-W33. DOI: 10.7326/M18-1377.

32.黄晓勇, 沈婧, 杨晓丽. 急性脑梗死合并急性肾损伤患者尿液中中性粒细胞明胶酶相关脂质运载蛋白、尿蛋白/肌酐比值水平观察[J]. 海军医学杂志, 2024, 45(10): 1067-1071. [Huang XY, Shen J, Yang XL, et al. Urinary NGAL and ACR levels in patients with acute cerebral infarction and acute renal injury[J]. Journal of Navy Medicine, 2024, 45(10): 1067-1071.] DOI: 10.3969/j.issn.1009-0754.2024.10.016.

33.Chen YY, Zhao G, Xia XH. Acute kidney injury after intracerebral hemorrhage: a mini review[J]. Front Med (Lausanne), 2024, 11: 1422081. DOI: 10.3389/fmed.2024.1422081.

34.Ohya Y, Irie F, Nakamura K, et al. Association between pulse pressure and risk of acute kidney injury after intracerebral hemorrhage[J]. Hypertens Res, 2024, 48(3): 939-949. DOI: 10.1038/s41440-024- 02046-2.

35.郭嫱, 王帅, 霍鹏飞, 等. 急性肾损伤相关生物标志物的临床研究进展[J]. 中国实验诊断学, 2022, 26(4): 620-622. [Guo Q, Wang S, Huo PF, et al. Advances in clinical research on biomarkers associated with acute kidney injury[J]. Chinese Journal of Laboratory Diagnosis, 2022, 26(4): 620-622.] DOI: 10.3969/j.issn.1007-4287.2022.04.043.

36.丁璐, 刘胜, 胡波. 急、慢性肾损伤患者血清中生物标志物的研究与验证[J]. 中国病理生理杂志, 2024, 40(2): 335-342. [Ding L, Liu S, Hu B. Study and validation of biomarkers in serum of patients with acute and chronic kidney injury[J]. Chinese Journal of Pathophysiology, 2024, 40(2): 335-342.] DOI: 10.3969/j.issn.1000-4718.2024.02.017.

37.Ostermann M, Legrand M, Meersch M, et al. Biomarkers in acute kidney injury[J]. Ann Intensive Care, 2024, 14(1): 145. DOI: 10.1186/s13613-024-01360-9.

38.马蓉蓉. 髓袢利尿剂和甘露醇联合使用导致急性肾损伤的风险预测模型建立与评价[D]. 乌鲁木齐: 新疆医科大学, 2019. [Ma RR. Establishment and evaluation of risk prediction model for acute kidney injury caused by combination of loop diuretic and mannitol[D]. Urumqi: Xinjiang Medical University, 2019.] https://d.wanfangdata.com.cn/thesis/ChhUaGVzaXNOZXdTMjAyNDA5MjAxNTE3MjUSCUQwMTcyODEwMxoIbGlhdmU4NGE=

39.Tran TT, Yun G, Kim S. Artificial intelligence and predictive models for early detection of acute kidney injury: transforming clinical practice[J]. BMC Nephrol, 2024, 25(1): 353. DOI: 10.1186/s12882-024-03793-7.

40.Tomašev N, Glorot X, Rae JW, et al. A clinically applicable approach to continuous prediction of future acute kidney injury[J]. Nature, 2019, 572(7767): 116-119. DOI: 10.1038/s41586-019-1390-1.