Objective To explore the influencing factors of mild cognitive impairment (MCI) in hospitalized elderly patients with multiple comorbidities, and to construct a MCI risk prediction model based on machine learning (ML) methods.
Methods The study included elderly patients with multiple comorbidities admitted to the First Affiliated Hospital of Xinjiang Medical University as research subjects. Single factor analysis and least absolute shrinkage and selection operator regression algorithms were used to screen for MCI risk factors. Nine different ML methods were used, including random forest, light gradient boosting machine, extreme gradient boosting, Logistic regression, K-nearest neighbor classification algorithm, support vector machine, artificial neural network, decision tree, and elastic network regression algorithm, to construct MCI risk prediction models. Shapley addition explanation (SHAP) algorithm was used to explain the final model.
Results A total of 920 hospitalized elderly patients with multiple comorbidities were included, including 261 cases in the MCI group. The random forest model had the best predictive performance, with a higher area under the receiver operating characteristic curve than other models. The SHAP algorithm identified the age, comorbidities, education level, and cerebrovascular disease in the random forest model as key decision factors for predicting MCI in hospitalized elderly patients with multiple comorbidities. The calibration curve showed that the predictive performance of the model was basically consistent with the actual results, and the decision curve indicated that the model had good clinical applicability.
Conclusion Advanced age, increased comorbidities, and cerebrovascular disease are risk factors for MCI in hospitalized elderly people with multiple comorbidities. High educational level is a protective factor for MCI in hospitalized elderly people with multiple comorbidities. Based on machine learning algorithms, the prediction model for MCI risk using random forest has the best predictive performance and good clinical applicability, which can assist in cognitive management and more accurate medical intervention for more efficient elderly comprehensive assessment in clinical practice.
1.曹丰, 王亚斌, 薛万国, 等. 中国老年疾病临床多中心报告 [J]. 中华老年多器官疾病杂志, 2018, 17(11): 801-808. [Cao F, Wang YB, Xue WG, et al. Clinical multi-centers report of chronic diseases among elderly inpatients in China[J]. Chinese Journal of Multiple Organ Diseases in the Elderly, 2018, 17(11): 801-808.] DOI: 10.11915/j.issn.1671-5403.2018.11.185.
2.郭伟, 彭聪, 李伟, 等. 西格列汀联合津力达颗粒治疗老年2型糖尿病患者轻度认知功能障碍观察[J]. 药物流行病学杂志, 2020, 29(10): 657-661. [Guo W, Peng C, Li W, et al. Clinical research on sitagliptin combined with jinlida granules in the treatment of elderly type 2 diabetic patients with mild cognitive impairment[J]. Chinese Journal of Pharmacoepidemiology, 2020, 29(10): 657-661.] DOI: 10.3969/j.issn.1008-049X.2020.10.022.
3.Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671. DOI: 10.1016/s2468-2667(20)30185-7.
4.孙晨, 拜争刚. 故事疗法延缓轻中度认知障碍老年人认知衰退的最佳证据总结[J]. 医学新知, 2022, 32(6): 453-462. [Sun C, Bai ZG. A summary of the best evidence for story therapy to delay cognitive decline in the elderly with mild to moderate cognitive impairment[J]. Yixue Xinzhi Zazhi, 2022, 32(6): 453-462.] DOI: 10.12173/j.issn.1004-5511.202203045.
5.郭伟, 李伟, 彭聪, 等. 根除幽门螺杆菌联合益生菌治疗对2型糖尿病患者轻度认知功能障碍的效果观察[J]. 药学前沿, 2020, 23(10): 1977-1980. [Guo W, Li W, Peng C, et al. Effect of helicobacter pylori eradication combined with probiotics in the treatment of mild cognitive impairment in type 2 diabetes mellitus[J]. Frontiers in Pharmaceutical Sciences, 2020, 23(10): 1977-1980.] DOI: 10.3969/j.issn.1008-049X.2020.10.022.
6.中华医学会神经病学分会痴呆与认知障碍学组. 阿尔茨海默病源性轻度认知障碍诊疗中国专家共识2021[J]. 中华神经科杂志, 2022, 55(5): 421-440. [Dementia and Cognitive Impairment Group, Neurology Branch, Chinese Medical Association. Chinese expert consensus on the diagnosis and treatment of mild cognitive impairment due to Alzheimer's disease 2021[J]. Chinese Journal of Neurology, 2022, 55(5): 421-440.] DOI: 10.3760/cma.j.cn113694-20211004-00679.
7.张筱, 袁欣瑞, 朱瑞, 等. 简易智能精神状态量表和蒙特利尔认知评估量表差值在老年期痴呆鉴别诊断中的价值[J]. 中华老年医学杂志, 2015, 34(5): 494-497. [Zhang X, Yuan XR, Zhu R, et al. Diagnostic significance of the difference values between mini-mental state examination and montreal cognitive assessment in elderly patients with dementia[J]. Chinese Journal of Geriatrics, 2015, 34(5): 494-497.] DOI: 10.3760/cma.j.issn.0254-9026.2015.05.010.
8.马佳, 张韶伟, 刘文斌, 等. 社区老年轻度认知障碍患者抑郁焦虑状况及影响因素研究[J]. 中国全科医学, 2020, 23(33): 4246-4251. [Ma J, Zhang SW, Liu WB, et al. Prevalence and associated factors of depression and anxiety in elderly patients with mild cognitive impairment in community: a cross-sectional study[J]. Chinese General Practice, 2020, 23(33): 4246-4251.] DOI: 10.12114/j.issn.1007-9572.2019.00.617.
9.崔宇琛, 张晗, 胡志强, 等. 基于机器学习的青年人群颞下颌关节紊乱病风险预测模型的构建[J]. 口腔医学研究, 2024, 40(10): 867-872. [Cui YC, Zhang H, Hu ZQ, et al. Construction of a risk prediction model for temporomandibular disorders in young people based on machine learning[J]. Journal of Oral Science Research, 2024, 40(10): 867-872.] DOI: 10.13701/j.cnki.kqyxyj.2024.10.004.
10.Ward A, Arrighi HM, Michels S, et al. Mild cognitive impairment: Disparity of incidence and prevalence estimates[J]. Alzheimers Dement, 2012, 8(1): 14-21. DOI: 10.1016/j.jalz.2011.01.002.
11.夏艳秋, 崔丽君, 魏丽萍, 等. 综合医院老年住院患者轻度认知功能障碍与焦虑抑郁关系的问卷调查[J]. 中国病案, 2020, 21(3): 83-86. [Xia YQ, Cui LJ, Wei LP, et al. A questionnaire survey on the relationship between mild cognitive impairment and anxiety and depression in elderly inpatients in general hospital[J]. Chinese Medical Record, 2020, 21(3): 83-86.] DOI: 10.3969/j.issn.1672-2566.2020.03.029.
12.黄夏璇, 黄韬, 袁师其, 等. 基于MATLAB的医学影像数据迁移学习的实现[J]. 医学新知, 2022, 32(1): 33-39. [Huang XX, Huang T, Yuan SQ, et al. Realization of medical image data transfer learning based on MATLAB[J]. Yixue Xinzhi Zazhi, 2022, 32(1): 33-39.] DOI: 10.12173/j.issn.1004-5511.202109018.
13.凌雄娟, 王俊杰. 基于机器学习算法的糖尿病预测[J]. 现代信息科技, 2024, 8(14): 59-63, 68. [Ling XJ, Wang JJ. Prediction of diabetes based on machine learning algorithm[J]. Modern Informationn Technology, 2024, 8(14): 59-63, 68.] DOI: 10.19850/j.cnki.2096-4706.2024.14.012.
14.Gelir F, Akan T, Alp S, et al. Machine learning approaches for predicting progression to Alzheimer's disease in patients with mild cognitive impairment[J]. J Med Biol Eng, 2025, 45(1): 63-83. DOI: 10.1007/s40846-024-00918-z.
15.吴瑞凯, 马龙, 周晓辉, 等. 住院老年患者轻度认知功能障碍风险预测模型的构建[J]. 医学新知, 2024, 34(1): 14-24. [Wu RK, Ma L, Zhou XH, et al. Construction of the risk predition model of mild cognitive impairment in hospitalized elder patients[J]. Yixue Xinzhi Zazhi, 2024, 34(1): 14-24.] DOI: 10.12173/j.issn.1004-5511.202311014.
16.钟霞, 赵天恩, 吕世盟, 等. 基于中西医双维特征构建老年高血压轻度认知障碍机器学习预测模型[J]. 南京中医药大学学报, 2024, 40(12): 1366-1374. [Zhong X, Zhao TE, Lyu SM, et al. Machine learning prediction model of mild cognitive impairment in elderly patients with hypertension based on bi-dimensional features of Chinese and western medicine[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2024, 40(12): 1366-1374.] DOI: 10.14148/j.issn.1672-0482.2024.1366.
17.James C, Ranson JM, Everson R, et al. Performance of machine learning algorithms for predicting progression to dementia in memory clinic patients[J]. JAMA Netw Open, 2021, 4(12): e2136553. DOI: 10.1001/jamanetworkopen.2021.36553.
18.Wang Y, Sun Y, Wang Y, et al. Identification of novel diagnostic panel for mild cognitive impairment and Alzheimer's disease: findings based on urine proteomics and machine learning[J]. Alzheimers Res Ther, 2023, 15(1): 191. DOI: 10.1186/s13195-023-01324-4.
19.张敏, 顾婷婷, 关蔚, 等. 基于机器学习算法构建中重度围绝经期综合征预测模型[J]. 医学新知, 2024, 34(8): 871-879. [Zhang M, Gu TT, Guan W, et al. Construction of a prediction model for moderate to severe perimenopausal syndrome based on machine learning algorithms[J]. Yixue Xinzhi Zazhi, 2024, 34(8): 871-879.] DOI: 10.12173/j.issn.1004-5511.202405116.
20.Dimitriadis SI, Liparas D, Alzheimer's Disease Neuroimaging Initiative. How random is the random forest? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer's disease: from alzheimer's disease neuroimaging initiative (ADNI) database[J]. Neural Regen Res, 2018, 13(6): 962-970. DOI: 10.4103/1673-5374.233433.
21.Lee H, Wang Z, Tillekeratne A, et al. Loss of functional heterogeneity along the CA3 transverse axis in aging[J]. Curr Biol, 2022, 32(12): 2681-2693. e4. DOI: 10.1016/j.cub.2022.04.077.
22.Johnson AC. Hippocampal vascular supply and its role in vascular cognitive impairment[J]. Stroke, 2023, 54(3): 673-685. DOI: 10.1161/strokeaha.122.038263.
23.吴瑞凯, 汪明伟, 韩正风, 等. 多病共存住院老年人常见慢性病对轻度认知功能障碍的影响[J]. 中华老年多器官疾病杂志, 2025, 24(1): 26-31. [Wu RK, Wang MW, Han ZF, et al. Influencing factors of common chronic diseases on mild cognitive impairment in elderly inpatients with multiple comorbidities[J]. Chinese Journal of Multiple Organ Diseases in the Elderly, 2025, 24(1): 26-31.] DOI: 10.11915/j.issn.1671-5403.2025.01.005.
24.Deng Y, Zhao S, Cheng G, et al. The prevalence of mild cognitive impairment among chinese people: a Meta-analysis[J]. Neuroepidemiology, 2021, 55(2): 79-91. DOI: 10.1159/ 000512597.