Welcome to visit Zhongnan Medical Journal Press Series journal website!

Predictive value of preoperative clinical parameters for early recurrence after radical resection of colorectal cancer liver metastases

Published on Apr. 25, 2025Total Views: 113 timesTotal Downloads: 63 timesDownloadMobile

Author: MA Ruidong LI Jiawei LUO Shiqiao

Affiliation: Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Keywords: Colorectal cancer liver metastases Early recurrence Radical resection Prediction model Nomogram

DOI: 10.12173/j.issn.1004-5511.202409144

Reference: Ma RD, Li JW, Luo SQ. Predictive value of preoperative clinical parameters for early recurrence after radical resection of colorectal cancer liver metastases[J]. Yixue Xinzhi Zazhi, 2025, 35(4): 419-429. DOI: 10.12173/j.issn.1004-5511.202409144. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Objective  To investigate the risk factors influencing early recurrence after radical resection in patients with colorectal cancer liver metastases (CRLM) and to develop a predictive model.

Methods  A retrospective analysis was conducted on the clinical data of CRLM patients who underwent radical resection from January 2012 to June 2023. Logistic regression and Lasso regression analysis were utilized to explore the risk factors for early recurrence, and a nomogram was constructed based on the risk factors. Assessing model discrimination using area under the curve (AUC) of the receiver operating characteristic curve, plotting calibration curves, and clinical decision curves to assess model calibration and clinical utility.

Results  The study included 242 patients, who were randomly divided into a training cohort (169 patients) and a validation cohort (73  patients). The Logistic and Lasso regression analyses identified preoperative systemic immune-inflammation index (SII)  ≥470.1[OR=2.96, 95%CI (1.14, 7.67)], prognostic nutritional index (PNI) <43.5[OR=5.91, 95%CI (1.41, 24.84)], albumin-globulin ratio (AGR) <1.3[OR=7.62, 95%CI (2.78, 20.90)], carcinoembryonic antigen (CEA)  ≥5.8  ng/ mL [OR=2.93, 95%CI (1.09, 7.86)], and bilobar distribution of liver metastases[OR=3.66, 95%CI (1.40, 9.57)] as independent risk factors for early recurrence. The nomogram developed from these findings demonstrated good discriminative ability with AUCs of 0.884 in the training cohort and 0.869 in the validation cohort. The calibration curve indicated that the nomogram model exhibited excellent calibration, and the clinical decision curve analysis suggested strong clinical utility.

Conclusion  Preoperative SII≥470.1, PNI<43.5, AGR<1.3, CEA≥5.8 ng/mL, and bilobar distribution of liver metastases are significant independent risk factors for early recurrence in CRLM patients. The nomogram constructed based on these factors can effectively predict early recurrence in postoperative patients.

Full-text
Please download the PDF version to read the full text: download
References

1.Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.

2.Siegel RL, Wagle NS, Cercek A, et al. Colorectal cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(3): 233-254. DOI: 10.3322/caac.21772.

3.Giannis D, Sideris G, Kakos CD, et al. The role of liver transplantation for colorectal liver metastases: a systematic review and pooled analysis[J]. Transplant Rev (Orlando), 2020, 34(4): 100570. DOI: 10.1016/j.trre.2020.100570.

4.Qin S, Liu GJ, Huang M, et al. The local efficacy and influencing factors of ultrasound-guided percutaneous microwave ablation in colorectal liver metastases: a review of a 4-year experience at a single center[J]. Int J Hyperthermia, 2019, 36(1): 36-43. DOI: 10.1080/02656736.2018.1528511.

5.Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480. DOI: 10.1016/S0140-6736(19)32319-0.

6.Bentrem DJ, Dematteo RP, Blumgart LH. Surgical therapy for metastatic disease to the liver[J]. Annu Rev Med, 2005, 56: 139-156. DOI: 10.1146/annurev.med.56.082103.104630.

7.Akgül Ö, Çetinkaya E, Ersöz Ş, et al. Role of surgery in colorectal cancer liver metastases[J]. World J Gastroenterol, 2014, 20(20): 6113-6122. DOI: 10.3748/wjg.v20.i20.6113.

8.Liang JY, Lin HC, Liu J, et al. A novel prognostic nomogram for colorectal cancer liver metastasis patients with recurrence after hepatectomy[J]. Cancer Med, 2021, 10(5): 1535-1544. DOI: 10.1002/cam4.3697.

9.de Jong MC, Pulitano C, Ribero D, et al. Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis: an international multi-institutional analysis of 1669 patients[J]. Ann Surg, 2009, 250(3): 440-448. DOI: 10.1097/SLA.0b013e3181b4539b.

10.Karanjia ND, Lordan JT, Fawcett WJ, et al. Survival and recurrence after neo-adjuvant chemotherapy and liver resection for colorectal metastases: a ten year study[J]. Eur J Surg Oncol, 2009, 35(8): 838-843. DOI: 10.1016/j.ejso.2008.09.017.

11.Zeng JX, Zeng JH, Lin KY, et al. Development of a machine learning model to predict early recurrence for hepatocellular carcinoma after curative resection[J]. Hepatobiliary Surg Nutr, 2022, 11(2): 176-187. DOI: 10.21037/hbsn-20-466.

12.Zeng CDD, Jin CC, Gao C, et al. Preoperative folate receptor-positive circulating tumor cells are associated with occult peritoneal metastasis and early recurrence in gastric cancer patients: a prospective cohort study[J]. Front Oncol, 2022, 12: 769203. DOI: 10.3389/fonc.2022.769203.

13.Nøst TH, Alcala K, Urbarova I, et al. Systemic inflammation markers and cancer incidence in the UK Biobank[J]. Eur J Epidemiol, 2021, 36(8): 841-848. DOI: 10.1007/s10654-021-00752-6.

14.Xie H, Ruan G, Ge Y, et al. Inflammatory burden as a prognostic biomarker for cancer[J]. Clin Nutr, 2022, 41(6): 1236-1243. DOI: 10.1016/j.clnu.2022.04.019.

15.Jung SH, Hao J, Shivakumar M, et al. Development and validation of a novel strong prognostic index for colon cancer through a robust combination of laboratory features for systemic inflammation: a prognostic immune nutritional index[J]. Br J Cancer, 2022, 126(11): 1539-1547. DOI: 10.1038/s41416-022-01767-w.

16.Li S, Zhang G, Lu Y, et al. Perioperative serum scoring systems predict early recurrence and poor prognosis of resectable pancreatic cancer[J]. Front Oncol, 2022, 12: 841819. DOI: 10.3389/fonc.2022.841819.

17.Hu Y, Cai Y, Ma W, et al. The prognostic nutritional index and tumor pathological characteristics predict the prognosis of elderly patients with early-stage hepatocellular carcinoma after surgery[J]. Biosci Trends, 2023, 17(5): 369-380. DOI: 10.5582/bst.2023.01212.

18.Chan AW, Chan SL, Wong GL, et al. Prognostic nutritional index (pni) predicts tumor recurrence of very early/early stage hepatocellular carcinoma after surgical resection[J]. Ann Surg Oncol, 2015, 22(13): 4138-4148. DOI: 10.1245/s10434-015-4516-1.

19.van 't Land FR, Aziz MH, Michiels N, et al. Increasing systemic immune-inflammation index during treatment in patients with advanced pancreatic cancer is associated with poor survival: a retrospective, multicenter, cohort study[J]. Ann Surg, 2023, 278(6): 1018-1023. DOI: 10.1097/SLA.0000000000005865.

20.Aziz MH, Sideras K, Aziz NA, et al. The systemic-immune-inflammation index independently predicts survival and recurrence in resectable pancreatic cancer and its prognostic value depends on bilirubin levels: a retrospective multicenter cohort study[J]. Ann Surg, 2019, 270(1): 139-146. DOI: 10.1097/SLA.0000000000002660.

21.Zhang D, Hu D. Exploring better stratification methods for individualized treatment of patients with colorectal cancer liver metastases[J]. Ann Palliat Med, 2022, 11(10): 3369-3370. DOI: 10.21037/apm-22-754.

22.Man ZR, Gong XK, Qu KL, et al. Albumin-bilirubin grade as a predictor of survival in hepatocellular carcinoma patients with thrombocytopenia[J]. World J Gastrointest Oncol, 2024, 16(5): 1763-1772. DOI: 10.4251/wjgo.v16.i5.1763.

23.Nishioka Y, Chun YS, Overman MJ, et al. Effect of co-mutation of RAS and TP53 on postoperative ctDNA detection and early recurrence after hepatectomy for colorectal liver metastases[J]. J Am Coll Surg, 2022, 234(4): 474-483. DOI: 10.1097/XCS.0000000000000093.

24.Sakai N, Furukawa K, Takayashiki T, et al. Recurrence patterns and their effects on clinical outcomes after R1 resection of colorectal liver metastases: a propensity score-matched analysis[J]. Langenbecks Arch Surg, 2021, 406(8): 2739-2747. DOI: 10.1007/s00423-021-02096-x.

25.Hellingman T, de Swart ME, Heymans MW, et al. Repeat hepatectomy justified in patients with early recurrence of colorectal cancer liver metastases: a systematic review and Meta-analysis[J]. Cancer Epidemiol, 2021, 74: 101977. DOI: 10.1016/j.canep.2021.101977.

26.Wang Q, Qiao W, Zhang H, et al. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma[J]. Front Immunol, 2022, 13: 1019638. DOI: 10.3389/fimmu.2022. 1019638.

27.Dai P, Chang W, Xin Z, et al. Retrospective study on the influencing factors and prediction of hospitalization expenses for chronic renal failure in China based on random forest and Lasso regression[J]. Front Public Health, 2021, 9: 678276. DOI: 10.3389/fpubh.2021.678276.

28.Kiely M, Lord B, Ambs S. Immune response and inflammation in cancer health disparities[J]. Trends Cancer, 2022, 8(4): 316-327. DOI: 10.1016/j.trecan.2021.11.010.

29.Wiseman MJ. Nutrition and cancer: prevention and survival[J]. Br J Nutr, 2019, 122(5): 481-487. DOI: 10.1017/S0007114518002222.

30.Li WZ, Hua X, Lv SH, et al. A scoring system based on nutritional and inflammatory parameters to predict the efficacy of first-line chemotherapy and survival outcomes for de novo metastatic nasopharyngeal carcinoma[J]. J Inflamm Res, 2021, 14: 817-828. DOI: 10.2147/JIR.S296710.

31.Zhu J, Wang D, Liu C, et al. Development and validation of a new prognostic immune-inflammatory-nutritional score for predicting outcomes after curative resection for intrahepatic cholangiocarcinoma: a multicenter study[J]. Front Immunol, 2023, 14: 1165510. DOI: 10.3389/fimmu.2023.1165510.

32.Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis[J]. J Hematol Oncol, 2021, 14(1): 173. DOI: 10.1186/s13045-021-01187-y.

33.Uribe-Querol E, Rosales C. Neutrophils in cancer: two sides of the same coin[J]. J Immunol Res, 2015, 2015: 983698. DOI: 10.1155/2015/983698.

34.Ishii K, Pouzolles M, Chien CD, et al. Perforin-deficient CAR T cells recapitulate late-onset inflammatory toxicities observed in patients[J]. J Clin Invest, 2020, 130(10): 5425-5443. DOI: 10.1172/JCI130059.

35.Masucci MT, Minopoli M, Del Vecchio S, et al. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis[J]. Front Immunol, 2020, 11: 1749. DOI: 10.3389/fimmu.2020.01749.

36.Lou XL, Sun J, Gong SQ, et al. Interaction between circulating cancer cells and platelets: clinical implication[J]. Chin J Cancer Res, 2015, 27(5): 450-460. DOI: 10.3978/j.issn.1000-9604.2015.04.10.

37.Zimmer N, Krebs FK, Zimmer S, et al. Platelet-derived GARP induces peripheral regulatory T cells-potential impact on T cell suppression in patients with melanoma-associated thrombocytosis[J]. Cancers (Basel), 2020, 12(12): 3653. DOI: 10.3390/cancers12123653.

38.Ray-Coquard I, Cropet C, Van Glabbeke M, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas[J]. Cancer Res, 2009, 69(13): 5383-5391. DOI: 10.1158/0008-5472.CAN-08-3845.

39.Cheng DX, Xu KD, Liu HB, et al. Prognostic value of a nomogram model for postoperative liver metastasis of colon cancer[J]. World J Gastrointest Surg, 2024, 16(4): 1055-1065. DOI: 10.4240/wjgs.v16.i4.1055.

40.Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature[J]. Nutr J, 2010, 9: 69. DOI: 10.1186/1475-2891-9-69.

41.Zhang W, Zhangyuan G, Wang F, et al. High preoperative serum globulin in hepatocellular carcinoma is a risk factor for poor survival[J]. J Cancer, 2019, 10(15): 3494-3500. DOI: 10.7150/jca.29499.

42.Viganò L, Gentile D, Galvanin J, et al. Very early recurrence after liver resection for colorectal metastases: incidence, risk factors, and prognostic impact[J]. J Gastrointest Surg, 2022, 26(3): 570-582. DOI: 10.1007/s11605-021-05123-w.

43.Tian Y, Wang Y, Wen N, et al. Prognostic factors associated with early recurrence following liver resection for colorectal liver metastases: a systematic review and Meta-analysis[J]. BMC Cancer, 2024, 24(1): 426. DOI: 10.1186/s12885-024-12162-4.

44.Dai S, Ye Y, Kong X, et al. A predictive model for early recurrence of colorectal-cancer liver metastases based on clinical parameters[J]. Gastroenterol Rep (Oxf), 2021, 9(3): 241-251. DOI: 10.1093/gastro/goaa092.

45.Deng Y, Chen Q, Li C, et al. Nomogram predicting early recurrence defined by the minimum P value approach for colorectal liver metastasis patients receiving colorectal cancer resection with simultaneous liver metastasis resection: development and validation[J]. J Gastrointest Oncol, 2023, 14(3): 1279-1292. DOI: 10.21037/jgo-22-934.