Welcome to visit Zhongnan Medical Journal Press Series journal website!

Advances in the study of the effects of circadian rhythm disruption on male infertility

Published on Mar. 25, 2025Total Views: 209 timesTotal Downloads: 57 timesDownloadMobile

Author: ZHU Anqi 1 MENG Feifei 1 HU Chunxiu 2 FU Hao 2 WANG Jian 2

Affiliation: 1. Department of General Practice, Chinese People's Armed Police Force Special Medical Center, Tianjin 300162, China 2. Department of Reproductive Medicine, Chinese People's Armed Police Force Special Medical Center, Tianjin 300162, China

Keywords: Circadian rhythm Male infertility Hormone Biological clock gene Spermatogenesis

DOI: 10.12173/j.issn.1004-5511.202412028

Reference: Zhu AQ, Meng FF, Hu CX, Fu H, Wang J. Advances in the study of the effects of circadian rhythm disruption on male infertility[J]. Yixue Xinzhi Zazhi, 2025, 35(3): 345-352. DOI: 10.12173/j.issn.1004-5511.202412028. [Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Circadian rhythms are endogenous timekeeping systems that produce rhythmic patterns in the cells, behaviors, and physiological processes of living organisms in response to the earth's rotation. The circadian rhythm system plays a vital role in maintaining homeostasis and normal physiological functions. With the development of modern society, factors such as lifestyle and work patterns have brought about many effects on fertility, and the problem of male infertility has gradually come to the forefront and become more serious. There is increasing growing that circadian rhythms are strongly associated with male fertility, and that circadian disorders may affect spermatogenesis and reduce sperm quality by altering the secretion of reproductive hormones and the expression of biological clock genes. This article provides a review of the relationship and possible mechanisms between circadian rhythms and male infertility to provide new ideas for the prevention and treatment of male infertility.

Full-text
Please download the PDF version to read the full text: download
References

1.Evans EPP, Scholten JTM, Mzyk A, et al. Male subfertility and oxidative stress[J]. Redox Biol, 2021, 46: 102071. DOI: 10.1016/j.redox.2021.102071.

2.Aydos OS, Yukselten Y, Aydos D, et al. Relationship between functional Nrf2 gene promoter polymorphism and sperm DNA  damage in male infertility[J]. Syst Biol Reprod Med, 2021, 67(6): 399-412. DOI: 10.1080/19396368.2021.1972359.

3.Xie Y, Tang Q, Chen G, et al. New insights into the circadian rhythm and its related diseases[J]. Front Physiol, 2019, 10: 682. DOI: 10.3389/fphys.2019.00682.

4.Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals[J]. Annu Rev Neurosci, 2012, 35: 445-462. DOI: 10.1146/annurev-neuro-060909-153128.

5.Allada R, Bass J. Circadian mechanisms in medicine[J]. N Engl J Med, 2021, 384(6): 550-561. DOI: 10.1056/NEJMra1802337.

6.Begemann K, Neumann AM, Oster H. Regulation and function of extra-SCN circadian oscillators in the brain[J]. Acta Physiol (Oxf), 2020, 229(1): e13446. DOI: 10.1111/apha.13446.

7.Takahashi JS, Hong HK, Ko CH, et al. The genetics of mammalian circadian order and disorder: implications for physiology and disease[J]. Nat Rev Genet, 2008, 9(10): 764-775. DOI: 10.1038/nrg2430.

8.Li T, Bai Y, Jiang Y, et al. The potential impacts of circadian rhythm disturbances on male fertility[J]. Front Endocrinol (Lausanne), 2022, 13: 1001316. DOI: 10.3389/fendo.2022.1001316.

9.Kume K, Zylka MJ, Sriram S, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop[J]. Cell, 1999, 98(2): 193-205. DOI: 10.1016/s0092-8674(00)81014-4.

10.Sciarra F, Franceschini E, Campolo F, et al. Disruption of circadian rhythms: a crucial factor in the etiology of infertility[J]. Int J Mol Sci, 2020, 21(11): 3943. DOI: 10.3390/ijms21113943.

11.Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock[J]. Trends Cell Biol, 2014, 24(2): 90-99. DOI: 10.1016/j.tcb.2013.07.002.

12.Fusco F, Longo N, De Sio M, et al. Impact of circadian desynchrony on spermatogenesis: a mini review[J]. Front Endocrinol (Lausanne), 2021, 12: 800693. DOI: 10.3389/fendo.2021.800693.

13.Mills J, Kuohung W. Impact of circadian rhythms on female reproduction and infertility treatment success[J]. Curr Opin Endocrinol Diabetes Obes, 2019, 26(6): 317-321. DOI: 10.1097/MED.0000000000000511.

14.贾慧, 王迪, 所芮, 等. 昼夜节律紊乱增加卒中风险机制的研究进展[J]. 中国卒中杂志, 2023, 18(5): 520-526. [Jia  H, Wang D, Suo R, et al. Research advances on mechanisms of increased stroke risk by circadian rhythm disruption[J]. Chinese Journal of Stroke, 2023, 18(5): 520-526.] DOI: 10.3969/j.issn.1673-5765.2023.05.005.

15.王怡, 程金湘, 钟曌, 等. 蓝光阻断治疗失眠及其机制的研究进展[J]. 中风与神经疾病杂志, 2023, 40(3): 235-237. [Wang Y, Cheng JX, Zhong Z, et al. Research progress of blue light blockade for insomnia and its mechanism[J]. Journal of Apoplexy and Nervous Diseases, 2023, 40(3): 235-237.] DOI: 10.19845/j.cnki.zfysjjbzz.2023.0058.

16.Hartley S, Dauvilliers Y, Quera-Salva MA. Circadian rhythm disturbances in the blind[J]. Curr Neurol Neurosci Rep, 2018, 18(10): 65. DOI: 10.1007/s11910-018-0876-9.

17.Si Y, Chen J, Shen Y, et al. Circadian rhythm sleep disorders and time-of-day-dependent memory deficiency in Presenilin1/2 conditional knockout mice with long noncoding RNA expression  profiling changes[J]. Sleep Med, 2023, 103: 146-158. DOI: 10.1016/j.sleep.2023.02.007.

18.Russell AL, Miller L, Yi H, et al. Knockout of the circadian gene, Per2, disrupts corticosterone secretion and results in depressive-like behaviors and deficits in startle responses[J]. Bmc Neurosci, 2021, 22(1): 5. DOI: 10.1186/s12868-020-00607-y.

19.Roybal K, Theobold D, Graham A, et al. Mania-like behavior induced by disruption of CLOCK[J]. Proc Natl Acad Sci U S A, 2007, 104(15): 6406-6411. DOI: 10.1073/pnas.0609625104.

20.Otsuka T, Le HT, Thein ZL, et al. Deficiency of the circadian clock gene Rev-erbalpha induces mood disorder-like behaviours and dysregulation of the serotonergic system in mice[J]. Physiol Behav, 2022, 256: 113960. DOI: 10.1016/j.physbeh.2022.113960.

21.Chong SY, Ptacek LJ, Fu YH. Genetic insights on sleep schedules: this time, it's PERsonal[J]. Trends Genet, 2012, 28(12): 598-605. DOI: 10.1016/j.tig.2012.08.002.

22.Bittman EL. Timing in the testis[J]. J Biol Rhythms, 2016, 31(1): 12-36. DOI: 10.1177/0748730415618297.

23.Xie M, Utzinger KS, Blickenstorfer K, et al. Diurnal and seasonal changes in semen quality of men in subfertile partnerships[J]. Chronobiol Int, 2018, 35(10): 1375-1384. DOI: 10.1080/07420528.2018.1483942.

24.Ni W, Liu K, Hou G, et al. Diurnal variation in sperm DNA fragmentation: analysis of 11,382 semen samples from two populations and in vivo animal experiments[J]. Chronobiol Int, 2019, 36(11): 1455-1463. DOI: 10.1080/07420528. 2019.1649275.

25.Green A, Barak S, Shine L, et al. Exposure by males to light emitted from media devices at night is linked with  decline of sperm quality and correlated with sleep quality measures[J]. Chronobiol Int, 2020, 37(3): 414-424. DOI: 10.1080/07420528.2020.1727918.

26.Makris A, Alevra AI, Exadactylos A, et al. The role of melatonin to ameliorate oxidative stress in sperm cells[J]. Int J Mol Sci, 2023, 24(20): 15056. DOI: 10.3390/ijms242015056.

27.Tian R, Yang T, Xiao C, et al. Outdoor artificial light at night and male sperm quality: a retrospective cohort  study in China[J]. Environ Pollut, 2024, 341: 122927. DOI: 10.1016/j.envpol.2023.122927.

28.El-Helaly M, Awadalla N, Mansour M, et al. Workplace exposures and male infertility-a case-control study[J]. Int J Occup Med Environ Health, 2010, 23(4): 331-338. DOI: 10.2478/v10001-010-0039-y.

29.Demirkol MK, Yildirim A, Gıca Ş, et al. Evaluation of the effect of shift working and sleep quality on semen parameters  in men attending infertility clinic[J]. Andrologia, 2021, 53(8): e14116. DOI: 10.1111/and.14116.

30.Liu K, Hou G, Wang X, et al. Adverse effects of circadian desynchrony on the male reproductive system: an epidemiological and experimental study[J]. Hum Reprod, 2020, 35(7): 1515-1528. DOI: 10.1093/humrep/deaa101.

31.Bisanti L, Olsen J, Basso O, et al. Shift work and subfecundity: a European multicenter study. European Study Group on Infertility and Subfecundity[J]. J Occup Environ Med, 1996, 38(4): 352-358. DOI: 10.1097/00043764-199604000-00012.

32.Eisenberg ML, Chen Z, Ye A, et al. Relationship between physical occupational exposures and health on semen quality: data from the longitudinal investigation of fertility and the environment (LIFE)  study[J]. Fertil Steril, 2015, 103(5): 1271-1277. DOI: 10.1016/j.fertnstert.2015.02.010.

33.Wang X, Chen Q, Zou P, et al. Sleep duration is associated with sperm chromatin integrity among young men in Chongqing, China[J]. J Sleep Res, 2018, 27(4): e12615. DOI: 10.1111/jsr.12615.

34.Smith I, Salazar I, RoyChoudhury A, et al. Sleep restriction and testosterone concentrations in young healthy males: randomized controlled studies of acute and chronic short sleep[J]. Sleep Health, 2019, 5(6): 580-586. DOI: 10.1016/j.sleh.2019.07.003.

35.Zhong O, Liao B, Wang J, et al. Effects of sleep disorders and circadian rhythm changes on male reproductive health: a systematic review and Meta-analysis[J]. Front Physiol, 2022, 13: 913369. DOI: 10.3389/fphys.2022.913369.

36.Wu JL, Wu RS, Yang JG, et al. Effects of sleep deprivation on serum testosterone concentrations in the rat[J]. Neurosci Lett, 2011, 494(2): 124-129. DOI: 10.1016/j.neulet.2011.02.073.

37.Leproult R, Van Cauter E. Effect of 1 week of sleep restriction on testosterone levels in young healthy men[J]. JAMA, 2011, 305(21): 2173-2174. DOI: 10.1001/jama.2011.710.

38.Du CQ, Yang YY, Chen J, et al. Association between sleep quality and semen parameters and reproductive hormones: a cross-sectional study in Zhejiang, China[J]. Nat Sci Sleep, 2020, 12: 11-18. DOI: 10.2147/NSS.S235136.

39.Ruge M, Skaaby T, Andersson AM, et al. Cross-sectional analysis of sleep hours and quality with sex hormones in men[J]. Endocr Connect, 2019, 8(2): 141-149. DOI: 10.1530/EC-18-0548.

40.Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis[J]. Mol Cell Endocrinol, 2020, 501: 110655. DOI: 10.1016/j.mce.2019.110655.

41.Morris CJ, Aeschbach D, Scheer FA. Circadian system, sleep and endocrinology[J]. Mol Cell Endocrinol, 2012, 349(1): 91-104. DOI: 10.1016/j.mce.2011.09.003.

42.Minnetti M, Hasenmajer V, Pofi R, et al. Fixing the broken clock in adrenal disorders: focus on glucocorticoids and  chronotherapy[J]. J Endocrinol, 2020, 246(2): R13-R31. DOI: 10.1530/JOE-20-0066.

43.Yao Y, Silver R. Mutual shaping of circadian body-wide synchronization by the suprachiasmatic nucleus and circulating steroids[J]. Front Behav Neurosci, 2022, 16: 877256. DOI: 10.3389/fnbeh.2022.877256.

44.Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: tales of mice and men[J]. Metabolism, 2018, 86: 3-17. DOI: 10.1016/j.metabol.2017.11.018.

45.Bracci M, Zingaretti L, Martelli M, et al. Alterations in pregnenolone and testosterone levels in male shift workers[J]. Int J Environ Res Public Health, 2023, 20(4): 3195. DOI: 10.3390/ijerph20043195.

46.Arnal PJ, Drogou C, Sauvet F, et al. Effect of sleep extension on the subsequent testosterone, cortisol and prolactin responses to total sleep deprivation and recovery[J]. J Neuroendocrinol, 2016, 28(2): 12346. DOI: 10.1111/jne.12346.

47.Leproult R, Van Cauter E. Effect of 1 week of sleep restriction on testosterone levels in young healthy men[J]. JAMA, 2011, 305(21): 2173-2174. DOI: 10.1001/jama.2011.710.

48.Pandi-Perumal SR, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: role of melatonin receptors and signal  transduction pathways[J]. Prog Neurobiol, 2008, 85(3): 335-353. DOI: 10.1016/j.pneurobio.2008.04.001.

49.赵梦洁, 宗志强, 王心琛, 等. 昼夜节律紊乱与不孕症的研究进展[J]. 实用预防医学, 2023, 30(12): 1545-1550. [Zhao MJ, Zong ZQ, Wang XC, et al. Research progress in circadian rhythm disruption and infertility[J]. Practical Preventive Medicine, 2023, 30(12): 1545-1550.] DOI: 10.3969/j.issn.1006-3110.2023.12.033.

50.Cipolla-Neto J, Amaral FGD. Melatonin as a hormone: new physiological and clinical insights[J]. Endocr Rev, 2018, 39(6): 990-1028. DOI: 10.1210/er.2018-00084.

51.Minucci S, Venditti M. New insight on the in vitro effects of melatonin in preserving human sperm quality[J]. Int J Mol Sci, 2022, 23(9): 5128. DOI: 10.3390/ijms23095128.

52.Xie M, Utzinger KS, Blickenstorfer K, et al. Diurnal and seasonal changes in semen quality of men in subfertile partnerships[J]. Chronobiol Int, 2018, 35(10): 1375-1384. DOI: 10.1080/07420528.2018.1483942.

53.Green A, Barak S, Shine L, et al. Exposure by males to light emitted from media devices at night is linked with  decline of sperm quality and correlated with sleep quality measures[J]. Chronobiol Int, 2020, 37(3): 414-424. DOI: 10.1080/07420528.2020.1727918.

54.Dickmeis T. Glucocorticoids and the circadian clock[J]. J Endocrinol, 2009, 200(1): 3-22. DOI: 10.1677/JOE-08-0415.

55.Luo E, Stephens SB, Chaing S, et al. Corticosterone blocks ovarian cyclicity and the LH surge via decreased kisspeptin neuron activation in female mice[J]. Endocrinology, 2016, 157(3): 1187-1199. DOI: 10.1210/en.2015-1711.

56.Zubair M, Ahmad M, Qureshi ZI. Review on arsenic-induced toxicity in male reproductive system and its amelioration[J]. Andrologia, 2017, 49(9). DOI: 10.1111/and.12791.

57.Rago V, Vivacqua A, Aquila S. Glucocorticoids improve sperm performance in physiological and pathological conditions: their role in sperm fight/flight response[J]. Anat Cell Biol, 2024, 57(1): 119-128. DOI: 10.5115/acb.23.164.

58.Xie C, Wang W, Tu C, et al. Meiotic recombination: insights into its mechanisms and its role in human reproduction with a special focus on non-obstructive azoospermia[J]. Hum Reprod Update, 2022, 28(6): 763-797. DOI: 10.1093/humupd/dmac024.

59.Li C, Xiao S, Hao J, et al. Cry1 deficiency leads to testicular dysfunction and altered expression of genes  involved in cell communication, chromatin reorganization, spermatogenesis, and immune response in mouse testis[J]. Mol Reprod Dev, 2018, 85(4): 325-335. DOI: 10.1002/mrd.22968.

60.Alvarez JD, Hansen A, Ord T, et al. The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice[J]. J Biol Rhythms, 2008, 23(1): 26-36. DOI: 10.1177/0748730407311254.

61.Zhong O, Liao B, Wang J, et al. Effects of sleep disorders and circadian rhythm changes on male reproductive health: a systematic review and Meta-analysis[J]. Front Physiol, 2022, 13: 913369. DOI: 10.3389/fphys.2022.913369.

62.Zhang P, Li C, Gao Y, et al. Altered circadian clock gene expression in the sperm of infertile men with asthenozoospermia[J]. J Assist Reprod Genet, 2022, 39(1): 165-172. DOI: 10.1007/s10815-021-02375-y.

63.Sinha N, Whelan EC, Tobias JW, et al. Roles of Stra8 and Tcerg1l in retinoic acid induced spermatogonial differentiation in mouse[J]. Biol Reprod, 2021, 105(2): 503-518. DOI: 10.1093/biolre/ioab093.

64.Cheng S, Liang X, Wang Y, et al. The circadian Clock gene regulates acrosin activity of sperm through serine protease inhibitor A3K[J]. Exp Biol Med (Maywood), 2016, 241(2): 205-215. DOI: 10.1177/1535370215597199.

65.Lei WL, Han F, Hu MW, et al. Protein phosphatase 6 is a key factor regulating spermatogenesis[J]. Cell Death Differ, 2020, 27(6): 1952-1964. DOI: 10.1038/s41418-019-0472-9.

66.Shafi AA, McNair CM, McCann JJ, et al. The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair[J]. Nat Commun, 2021, 12(1): 401. DOI: 10.1038/s41467-020-20513-5.