Sepsis, which can lead to immune dysregulation and multiple organ dysfunction, causes approximately 11 million lives worldwide annually and is one of the most common causes of death in intensive care units. The gut microbiome, specifically referring to gut bacteria, is a crucial component of the human microbiota that contributes to systemic immune homeostasis. Dysbiosis, or an imbalance of the gut microbiota, can lead to impaired immune defense, compromised intestinal barrier integrity, and plays a pivotal role in the pathogenesis of sepsis. Given the gut microbiome's immense genetic and metabolic diversity, it has shown promising potential in precision medicine and personalized treatment. This review primarily summarized the impacts of the gut microbiome on the development of sepsis. It described potential therapeutic approaches, providing a new perspective for future research aimed at reducing the risk of sepsis, decreasing mortality rates, and improving patient outcomes by modulating the gut microbiome.
HomeArticlesVol 34,2024 No.12Detail
The roles of the gut microbiome in the development and progression of sepsis and its therapeutic potential
Published on Dec. 28, 2024Total Views: 7983 timesTotal Downloads: 1470 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Bian Y, Xu J, Deng X, et al. A Mendelian randomization study: roles of gut microbiota in sepsis-who is the angle?[J]. Pol J Microbiol, 2024, 73(1): 49-57. DOI: 10.33073/pjm-2024-006.
2.Chen Y, Sun K, Qi Y, et al. L-valine derived from the gut microbiota protects sepsis-induced intestinal injury and negatively correlates with the severity of sepsis[J]. Front Immunol, 2024, 15: 1424332. DOI: 10.3389/fimmu.2024.1424332.
3.Hou J, Xiang J, Li D, et al. Gut microbial response to host metabolic phenotypes[J]. Front Nutr, 2022, 9: 1019430. DOI: 10.3389/fnut.2022.1019430.
4.Miller WD, Keskey R, Alverdy JC. Sepsis and the microbiome: a vicious cycle[J]. J Infect Dis, 2021, 223(12 Suppl 2): S264-S269. DOI: 10.1093/infdis/jiaa682.
5.Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens[J]. Immunol Rev, 2017, 279(1): 90-105. DOI: 10.1111/imr.12563.
6.Chanderraj R, Baker JM, Kay SG, et al. In critically ill patients, anti-anaerobic antibiotics increase risk of adverse clinical outcomes[J]. Eur Respir J, 2023, 61(2): 2200910. DOI: 10.1183/13993003.00910-2022.
7.Agudelo-Ochoa GM, Valdés-Duque BE, Giraldo-Giraldo NA, et al. Gut microbiota profiles in critically ill patients, potential biomarkers and risk variables for sepsis[J]. Gut Microbes, 2020, 12(1): 1707610. DOI: 10.1080/19490976.2019.1707610.
8.Chancharoenthana W, Kamolratanakul S, Schultz MJ, et al. The leaky gut and the gut microbiome in sepsis-targets in research and treatment[J]. Clin Sci (Lond), 2023, 137(8): 645-662. DOI: 10.1042/CS20220777.
9.Prescott HC, Dickson RP, Rogers MA, et al. Hospitalization type and subsequent severe sepsis[J]. Am J Respir Crit Care Med, 2015, 192(5): 581-588. DOI: 10.1164/rccm.201503-0483OC.
10.Assimakopoulos SF, Triantos C, Thomopoulos K, et al. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment[J]. Infection, 2018, 46(6): 751-760. DOI: 10.1007/s15010-018-1178-5.
11.Huang XQ, Qiu JK, Wang CH, et al. Sepsis secondary to multifocal Enterococcus faecium infection: a case report[J]. Medicine (Baltimore), 2020, 99(27): e19811. DOI: 10.1097/MD.0000000000019811.
12.Chen G, Huang B, Fu S, et al. G protein-coupled receptor 109A and host microbiota modulate intestinal epithelial integrity during sepsis[J]. Front Immunol, 2018, 9: 2079. DOI: 10.3389/fimmu.2018.02079.
13.Schuijt TJ, Lankelma JM, Scicluna BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia[J]. Gut, 2016, 65(4): 575-583. DOI: 10.1136/gutjnl-2015-309728.
14.Fay KT, Klingensmith NJ, Chen CW, et al. The gut microbiome alters immunophenotype and survival from sepsis[J]. FASEB J, 2019, 33(10): 11258-11269. DOI: 10.1096/fj.201802188R.
15.Krezalek MA, DeFazio J, Zaborina O, et al. The shift of an intestinal "microbiome" to a "pathobiome" governs the course and outcome of sepsis following surgical injury[J]. Shock, 2016, 45: 475-482. DOI: 10.1097/SHK.0000000000000534.
16.Xu R, Tan C, Zhu J, et al. Dysbiosis of the intestinal microbiota in neurocritically ill patients and the risk for death[J]. Crit Care, 2019, 23(1): 195. DOI: 10.1186/s13054-019-2488-4.
17.Liu Z, Li N, Fang H, et al. Enteric dysbiosis is associated with sepsis in patients[J]. FASEB J, 2019, 33(11): 12299-12310. DOI: 10.1096/fj.201900398RR.
18.Barlow B, Ponnaluri S, Barlow A, et al. Targeting the gut microbiome in the management of sepsis-associated encephalopathy[J]. Front Neurol, 2022, 13: 999035. DOI: 10.3389/fneur.2022.999035.
19.Luca M, Chattipakorn SC, Sriwichaiin S, et al. Cognitive-behavioural correlates of dysbiosis: a review[J]. Int J Mol Sci, 2020, 21(14): 4834. DOI: 10.3390/ijms21144834.
20.Li S, Lv J, Li J, et al. Intestinal microbiota impact sepsis associated encephalopathy via the vagus nerve[J]. Neurosci Lett, 2018, 662:98-104. DOI: 10.1016/j.neulet.2017.10.008.
21.McDonald B, Zucoloto AZ, Yu IL, et al. Programing of an intravascular immune firewall by the gut microbiota protects against pathogen dissemination during infection[J]. Cell Host Microbe, 2020, 28(5): 660-668. e4. DOI: 10.1016/j.chom.2020.07.014.
22.Gong S, Yan Z, Liu Z, et al. Intestinal microbiota mediates the susceptibility to polymicrobial sepsis-induced liver injury by Granisetron generation in mice[J]. Hepatology, 2019, 69(4): 1751-1767. DOI: 10.1002/hep.30361.
23.Liu B, Yu Y, Zhao M, et al. Correlation analysis of the microbiome and immune function in the lung-gut axis of critically ill patients in the ICU[J]. Front Med (Lausanne), 2022, 9: 808302. DOI: 10.3389/fmed.2022.808302.
24.Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1(10): 16113. DOI: 10.1038/nmicrobiol.2016.113.
25.Vincent JL, Rello J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units[J]. JAMA, 2009, 302(21): 2323-2329. DOI: 10.1001/jama.2009.1754.
26.Taur Y, Jenq RR, Perales MA, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation[J]. Blood, 2014, 124(7): 1174-1182. DOI: 10.1182/blood- 2014-02-554725.
27.Schlechte J, Zucoloto AZ, Yu IL, et al. Dysbiosis of a microbiota-immune metasystem in critical illness is associated with nosocomial infections[J]. Nat Med, 2023, 29(4): 1017-1027. DOI: 10.1038/s41591-023-02243-5.
28.He S, Lin F, Hu X, et al. Gut microbiome-based therapeutics in critically ill adult patients-a narrative review[J]. Nutrients, 2023, 15(22): 4734. DOI: 10.3390/nu15224734.
29.Kim SM, DeFazio JR, Hyoju SK, et al. Fecal microbiota transplant rescues mice from human pathogen mediated sepsis by restoring systemic immunity[J]. Nat Commun, 2020, 11(1): 2354. DOI: 10.1038/s41467-020-15545-w.
30.Assimakopoulos SF, Papadopoulou I, Bantouna D, et al. Fecal microbiota transplantation and hydrocortisone ameliorate intestinal barrier dysfunction and improve survival in a rat model of cecal ligation and puncture-induced sepsis[J]. Shock, 2021, 55(5): 666-675. DOI: 10.1097/SHK.0000000000001566.
31.Seifi N, Sedaghat A, Nematy M, et al. Effects of synbiotic supplementation on the serum endotoxin level, inflammatory status, and clinical outcomes of adult patients with critical illness: a randomized controlled trial[J]. Nutr Clin Pract, 2022, 37(2): 451-458. DOI: 10.1002/ncp.10758.
32.Fu Y, Moscoso DI, Porter J, et al. Relationship between dietary fiber intake and short-chain fatty acid-producing bacteria during critical illness: a prospective cohort study[J]. JPEN J Parenter Enteral Nutr, 2020, 44(3): 463-471. DOI: 10.1002/jpen.1682.
33.You S, Ma Y, Yan B, et al. The promotion mechanism of prebiotics for probiotics: a review[J]. Front Nutr, 2022, 9: 1000517. DOI: 10.3389/fnut.2022.1000517.
34.Olas B. Probiotics, prebiotics and synbiotics-a promising strategy in prevention and treatment of cardiovascular diseases?[J]. Int J Mol Sci, 2020, 21(24): 9737. DOI: 10.3390/ijms21249737.
35.Rohith G, Sureshkumar S, Anandhi A, et al. Effect of synbiotics in reducing the systemic inflammatory response and septic complications in moderately severe and severe acute pancreatitis: a prospective parallel-arm double-blind randomized trial[J]. Dig Dis Sci, 2023, 68(3): 969-977. DOI: 10.1007/s10620-022-07618-1.
36.Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids[J]. Cell Mol Immunol, 2021, 18(5): 1161-1171. DOI: 10.1038/s41423-020-00625-0.
37.Zhang H, Xu J, Wu Q, et al. Gut microbiota mediates the susceptibility of mice to sepsis-associated encephalopathy by butyric acid[J]. J Inflamm Res, 2022, 15: 2103-2119. DOI: 10.2147/JIR.S350566.
38.Ji JJ, Sun QM, Nie DY, et al. Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis[J]. Acta Pharmacol Sin, 2021, 42(10): 1630-1641. DOI: 10.1038/s41401-020-00573-5.
39.Yu Q, Yu F, Li Q, et al. Anthocyanin-rich butterfly pea flower extract ameliorating low-grade inflammation in a high-fat-diet and lipopolysaccharide-induced mouse model[J]. J Agric Food Chem, 2023, 71(31): 11941-11956. DOI: 10.1021/acs.jafc.3c02696.
40.Chen T, Yang CS. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects[J]. Crit Rev Food Sci Nutr, 2020, 60: 2691-2709. DOI: 10.1080/10408398.2019.1654430.
41.Cao Z, Sugimura N, Burgermeister E, et al. The gut virome: a new microbiome component in health and disease[J]. EBioMedicine, 2022, 81: 104113. DOI: 10.1016/j.ebiom. 2022.104113.
42.Fujiki J, Schnabl B. Phage therapy: targeting intestinal bacterial microbiota for the treatment of liver diseases[J]. JHEP Rep, 2023, 5(12): 100909. DOI: 10.1016/j.jhepr. 2023.100909.
Popular Papers
-
Mediating effects of social support and health literacy on self-efficacy and self-advocacy in patients with postoperative chemotherapy for breast cancer
Aug. 25, 20259182
-
Frontier progress and future strategies in the treatment of pulmonary fibrosis
Aug. 25, 20258505
-
Analysis of depression burden and attribution risk factors among Chinese adolescents aged 10~24 from 1990 to 2021
Sep. 26, 20258250
-
Analysis of cancer disease burden in China from 1990 to 2021
Aug. 25, 20256616
-
A case report on chemotherapy-free treatment for small cell lung cancer
Aug. 25, 20254737
-
The disease burden of infertility in China from 1992 to 2021 based on an age-period-cohort model
Sep. 26, 20254504
-
Systematic review and Meta-analysis of prediction models: a case study on the risk prediction model for hepatocellular carcinoma in patients with chronic hepatitis B
Aug. 25, 20254411
-
Prediction of incidence and mortality rates of nasopharyngeal carcinoma in China from 2022 to 2026: based on GM(1,1) and ARIMA models
Sep. 26, 20254345
-
Research progress on neutrophil extracellular traps in tumors
Sep. 26, 20254172
-
Systematic evaluation of predictive models for deep vein thrombosis risk in patients undergoing hip surgery
Aug. 25, 20254031
-
Relationship between the ratio of non-HDL-C and HDL-C and the risk of all-cause mortality in a population with abnormal glucose metabolism: base on CHARLS database
Aug. 25, 20253958
-
A study on the implementation and effect of formative evaluation ability training for clinical teachers
Sep. 26, 20253904
-
The association between sleep duration, overweight/obesity, and multimorbidity among primary care medical staff
Sep. 26, 20253889
-
Progress of gut microbiota in tumor immunotherapy
Sep. 26, 20253884
-
Relationship between serum NF-κB, CXCL13, ADAM17 levels and prognosis in children with primary immune thrombocytopenia
Sep. 26, 20253874
Welcome to visit Zhongnan Medical Journal Press Series journal website!