Spinal cord injury (SCI) is a disease that profoundly impacts the central nervous system, with oxidative stress playing a crucial role in its secondary damage. This article provides a comprehensive review of the role of oxidative stress in SCI, its primary signaling pathways, and current treatment methods. It focuses particularly on the functions of pathways such as Nrf-2, PI3K/AKT, and TLR4/MyD88 in the regulation of oxidative stress and explores the potential of antioxidant therapies in alleviating SCI symptoms. This paper aims to offer insights for a deeper understanding of SCI and provide reference for optimizing treatment strategies.
HomeArticlesVol 34,2024 No.3Detail
Research progress on the role and mechanism of oxidative stress in spinal cord injury
Published on Mar. 29, 2024Total Views: 2657 timesTotal Downloads: 2715 timesDownloadMobile
- Abstract
- Full-text
- References
Abstract
Full-text
References
1.Hu XC, Lu YB, Yang YN, et al. Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered?[J]. Neural Regen Res, 2021, 16(3): 405-413. DOI: 10.4103/1673-5374.293130.
2.Quadri SA, Farooqui M, Ikram A, et al. Recent update on basic mechanisms of spinal cord injury[J]. Neurosurg Rev, 2020, 43(2): 425-441. DOI: 10.1007/s10143-018-1008-3.
3.Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J]. Int J Mol Sci, 2020, 21(20): 7533. DOI: 10.3390/ijms21207533.
4.Fakhri S, Abbaszadeh F, Moradi SZ, et al. Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury [J]. Oxid Med Cell Longev, 2022, 2022: 8100195. DOI: 10.1155/2022/8100195.
5.Baroncini A, Maffulli N, Eschweiler J, et al. Pharmacological management of secondary spinal cord injury[J]. Expert Opin Pharmacother, 2021, 22(13): 1793-1800. DOI: 10.1080/14656566.2021.1918674.
6.Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine[J]. Chem Rev, 2019, 119(8): 4881-4985. DOI: 10.1021/acs.chemrev.8b00626.
7.Fatima G, Sharma VP, Das SK, et al. Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease[J]. Spinal Cord, 2015, 53(1): 3-6. DOI: 10.1038/sc.2014.178.
8.Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms[J]. Front Neurol, 2019, 10: 282. DOI: 10.3389/fneur.2019.00282.
9.Brennan AM, Suh SW, Won SJ, et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation[J]. Nat Neurosci, 2009, 12(7): 857-863. DOI: 10.1038/nn.2334.
10.Demaurex N, Scorrano L. Reactive oxygen species are NOXious for neurons[J]. Nat Neurosci, 2009, 12(7): 819-820. DOI: 10.1038/nn0709-819.
11.Shi Z, Yuan S, Shi L, et al. Programmed cell death in spinal cord injury pathogenesis and therapy[J]. Cell Prolif, 2021, 54(3): e12992. DOI: 10.1111/cpr.12992.
12.Lin J, Xiong Z, Gu J, et al. Sirtuins: potential therapeutic targets for defense against oxidative stress in spinal cord injury[J]. Oxid Med Cell Longev, 2021, 2021: 7207692. DOI: 10.1155/2021/7207692.
13.Liu L, Zhou J, Wang Y, et al. Imatinib inhibits oxidative stress response in spinal cord injury rats by activating Nrf2/HO-1 signaling pathway[J]. Exp Ther Med, 2020, 19(1): 597-602. DOI: 10.3892/etm.2019.8270.
14.Rao S, Lin Y, Lin R, et al. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment[J]. J Nanobiotechnology, 2022, 20(1): 278. DOI: 10.1186/s12951-022-01490-x.
15.Dong Y, Yong VW. Oxidized phospholipids as novel mediators of neurodegeneration[J]. Trends Neurosci, 2022, 45(6): 419-429. DOI: 10.1016/j.tins.2022.03.002.
16.Liu Z, Yao X, Jiang W, et al. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury[J]. J Neuroinflammation, 2020, 17(1): 90. DOI: 10.1186/s12974-020-01751-2.
17.Kim JW, Mahapatra C, Hong JY, et al. Functional recovery of contused spinal cord in rat with the injection of optimal-dosed cerium oxide nanoparticles[J]. Adv Sci (Weinh), 2017, 4(10): 1700034. DOI: 10.1002/advs.201700034.
18.Li D, Tian H, Li X, et al. Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells[J]. Life Sci, 2020, 245: 117351. DOI: 10.1016/j.lfs.2020.117351.
19.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.
20.Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379. DOI: 10.1038/cdd.2015.158.
21.Ge MH, Tian H, Mao L, et al. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway[J]. CNS Neurosci Ther, 2021, 27(9): 1023-1040. DOI: 10.1111/cns.13657.
22.Xia M, Zhang Q, Zhang Y, et al. Growth differentiation factor 15 regulates oxidative stress-dependent ferroptosis post spinal cord injury by stabilizing the p62-Keap1-Nrf2 signaling pathway[J]. Front Aging Neurosci, 2022, 14: 905115. DOI: 10.3389/fnagi.2022.905115.
23.Wakatsuki S, Takahashi Y, Shibata M, et al. Selective phosphorylation of serine 345 on p47-phox serves as a priming signal of ROS-mediated axonal degeneration[J]. Exp Neurol, 2022, 352: 114024. DOI: 10.1016/j.expneurol. 2022.114024.
24.Wang W, Huang X, Zhang Y, et al. Se@SiO2 nanocomposites suppress microglia-mediated reactive oxygen species during spinal cord injury in rats[J]. RSC Adv, 2018, 8(29): 16126-16138. DOI: 10.1039/c8ra01906a.
25.Zheng Q, Zhang J, Zuo X, et al. Photobiomodulation promotes neuronal axon regeneration after oxidative stress and induces a change in polarization from M1 to M2 in macrophages via stimulation of CCL2 in neurons: relevance to spinal cord injury[J]. J Mol Neurosci, 2021, 71(6): 1290-1300. DOI: 10.1007/s12031-020-01756-9.
26.Hervera A, De Virgiliis F, Palmisano I, et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons[J]. Nat Cell Biol, 2018, 20(3): 307-319. DOI: 10.1038/s41556-018-0039-x.
27.Shiao R, Lee-Kubli CA. Neuropathic pain after spinal cord injury: challenges and research perspectives[J]. Neurotherapeutics, 2018, 15(3): 635-653. DOI: 10.1007/s13311-018-0633-4.
28.Kallenborn-Gerhardt W, Schröder K, Schmidtko A. Nadph oxidases in pain processing[J]. Antioxidants (Basel), 2022, 11(6): 1162. DOI: 10.3390/antiox11061162.
29.Lee BH, Kang J, Kim HY, et al. The roles of superoxide on at-level spinal cord injury pain in rats[J]. Int J Mol Sci, 2021, 22(5): 2672. DOI: 10.3390/ijms22052672.
30.Baron-Flores V, Diaz-Ruiz A, Manzanares J, et al. Cannabidiol attenuates hypersensitivity and oxidative stress after traumatic spinal cord injury in rats[J]. Neurosci Lett, 2022, 788: 136855. DOI: 10.1016/j.neulet.2022.136855.
31.Zhao Y, Sun Y, Wang G, et al. Dendrobium officinale polysaccharides protect against MNNG-Induced PLGC in rats via activating the NRF2 and antioxidant enzymes HO-1 and NQO-1[J]. Oxid Med Cell Longev, 2019, 2019: 9310245. DOI: 10.1155/2019/9310245.
32.Li X, Zhan J, Hou Y, et al. Coenzyme Q10 regulation of apoptosis and oxidative stress in H2O2 induced BMSC death by modulating the Nrf-2/NQO-1 signaling pathway and its application in a model of spinal cord injury[J]. Oxid Med Cell Longev, 2019, 2019: 6493081.DOI: 10.1155/2019/6493081.
33.Xia P, Gao X, Duan L, et al. Mulberrin (Mul) reduces spinal cord injury (SCI)-induced apoptosis, inflammation and oxidative stress in rats via miroRNA-337 by targeting Nrf-2[J]. Biomed Pharmacother, 2018, 107: 1480-1487. DOI: 10.1016/j.biopha.2018.07.082.
34.Xiao CL, Yin WC, Zhong YC, et al. The role of PI3K/Akt signalling pathway in spinal cord injury[J]. Biomed Pharmacother, 2022, 156: 113881. DOI: 10.1016/j.biopha.2022.113881.
35.He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities[J]. Cell Prolif, 2022, 55(9): e13275. DOI: 10.1111/cpr.13275.
36.He X, Guo X, Ma Z, et al. Grape seed proanthocyanidins protect PC12 cells from hydrogen peroxide-induced damage via the PI3K/AKT signaling pathway[J]. Neurosci Lett, 2021, 750: 135793. DOI: 10.1016/j.neulet.2021.135793.
37.Li F, Song X, Xu J, et al. Morroniside protects OLN-93 cells against H2O2-induced injury through the PI3K/Akt pathway-mediated antioxidative stress and antiapoptotic activities[J]. Cell Cycle, 2021, 20(7): 661-675. DOI: 10.1080/15384101.2021.1889186.
38.Azam S, Jakaria M, Kim IS, et al. Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling[J]. Front Immunol, 2019, 10: 1000. DOI: 10.3389/fimmu.2019.01000.
39.米爽, 吴燕君, 洪正华, 等. TLR4/MyD88/NF-κB通路基因及相关炎症因子在继发性脊髓损伤患者中的表达[J]. 浙江大学学报(医学版), 2019, 48(6): 609-616. [Mi S, Wu YJ, Hong ZH, et al. Expression of TLR4/MyD88/NF-κB pathway genes and its related inflammatory factors in secondary spinal cord injury[J]. Journal of Zhejiang University (Medical Sciences), 2019, 48(6): 609-616.] DOI: 10.3785/j.issn.1008-9292.2019.12.04.
40.Li H, Wang Y, Hu X, et al. Thymosin beta 4 attenuates oxidative stress-induced injury of spinal cord-derived neural stem/progenitor cells through the TLR4/MyD88 pathway[J]. Gene, 2019, 707: 136-142. DOI: 10.1016/j.gene.2019.04.083.
41.Zhang SS, Liu M, Liu DN, et al. TLR4-IN-C34 Inhibits lipopolysaccharide-stimulated inflammatory responses via downregulating TLR4/MyD88/NF-κB/NLRP3 signaling pathway and reducing ROS generation in BV2 cells[J]. Inflammation, 2022, 45(2): 838-850. DOI: 10.1007/s10753-021-01588-8.
42.Zhou B, Lin W, Long Y, et al. Notch signaling pathway: architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 95. DOI: 10.1038/s41392-022-00934-y.
43.Zhang S, Botchway BOA, Zhang Y, et al. Resveratrol can inhibit notch signaling pathway to improve spinal cord injury[J]. Ann Anat, 2019, 223: 100-107. DOI: 10.1016/j.aanat.2019.01.015.
44.Li L, Lin G, Gu H, et al. Effects of Srxn1 on growth and Notch signalling of astrocyte induced by hydrogen peroxide[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1917-1923. DOI: 10.1080/21691401.2019.1614016.
45.Lv Z, Yin S, Cheng Z, et al. Lenalidomide improves H2O2-induced PC12 cell injury by blocking the Notch signaling pathway[J]. Exp Ther Med, 2022, 23(6): 421. DOI: 10.3892/etm.2022.11348.
46.De Los Reyes Corrales T, Losada-Pérez M, Casas-Tintó S. JNK pathway in CNS pathologies[J]. Int J Mol Sci, 2021, 22(8): 3883. DOI: 10.3390/ijms22083883.
47.Khalid S, Drasche A, Thurner M, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation[J]. Sci Rep, 2016, 6: 20930. DOI: 10.1038/srep20930.
48.Cheng M, Wu X, Wang F, et al. Electro-acupuncture inhibits p66Shc-mediated oxidative stress to facilitate functional recovery after spinal cord injury[J]. J Mol Neurosci, 2020, 70(12): 2031-2040. DOI: 10.1007/s12031-020-01609-5.
49.刘娟, 钟子安, 杨柳, 等. 迷迭香酸调控SIRT1/NF-κB通路对缺氧复氧神经元炎症及氧化应激损伤的影响[J]. 中国药师, 2022, 25(2): 227-231. [Liu J, Zhong ZA, Yang L, et al. Effects of rosmarinic acid on lnflammation and oxidative stress damage of hypoxiareoxygenation neurons by regulating SIRT1/NF-KB pathway[J]. China Pharmacist, 2022, 25(2): 227-231.] DOI: 10.19962/j.cnki.issn1008-049X.2022.02.005.
50.Ma Z, Lu Y, Yang F, et al. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways[J]. Toxicol Appl Pharmacol, 2020, 397: 115014. DOI: 10.1016/j.taap.2020.115014.
51.Zhang L, Zhang W, Zheng B, et al. Sinomenine attenuates traumatic spinal cord injury by suppressing oxidative stress and inflammation via Nrf2 pathway[J]. Neurochem Res, 2019, 44(4): 763-775. DOI: 10.1007/s11064-018-02706-z.
52.Sun P, Liu DZ, Jickling GC, et al. MicroRNA-based therapeutics in central nervous system injuries[J]. J Cereb Blood Flow Metab, 2018, 38(7): 1125-1148. DOI: 10.1177/0271678x18773871.
53.Zhang ZZ, Xian SY, Bao C, et al. MicroRNA-299a-5p protects against spinal cord injury through activating AMPK pathway[J]. Oxid Med Cell Longev, 2022, 2022: 8659587. DOI: 10.1155/2022/8659587.
54.Guan C, Wang Y. LncRNA CASC9 attenuates lactate dehydrogenase-mediated oxidative stress and inflammation in spinal cord injury via sponging miR-383-5p[J]. Inflammation, 2021, 44(3): 923-933. DOI: 10.1007/s10753-020-01387-7.
55.Chen ZH, Wu SH. Protective effects of SIRT6 against inflammation, oxidative stress, and cell apoptosis in spinal cord injury[J]. Inflammation, 2020, 43(5): 1751-1758. DOI: 10.1007/s10753-020-01249-2.
56.Li Y, Yang L, Hu F, et al. Novel thermosensitive hydrogel promotes spinal cord repair by regulating mitochondrial function[J]. ACS Appl Mater Interfaces, 2022, 14(22): 25155-25172. DOI: 10.1021/acsami.2c04341.
57.Rao S, Lin Y, Du Y, et al. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction[J]. J Mater Chem B, 2019, 7(16): 2648-2656. DOI: 10.1039/c8tb02520g.
58.Zhang J, Li Y, Xiong J, et al. Delivery of pOXR1 through an injectable liposomal nanoparticle enhances spinal cord injury regeneration by alleviating oxidative stress[J]. Bioact Mater, 2021, 6(10): 3177-3191. DOI: 10.1016/j.bioactmat.2021.03.001.
59.Zhang A, Bai Z, Yi W, et al. Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats[J]. Neurosci Lett, 2021, 761: 136124. DOI: 10.1016/j.neulet.2021.136124.
60.Gollihue JL, Patel SP, Rabchevsky AG. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma[J]. Neural Regen Res, 2018, 13(2): 194-197. DOI: 10.4103/1673-5374.226382.
61.Lin MW, Fang SY, Hsu JC, et al. Mitochondrial transplantation attenuates neural damage and improves locomotor function after traumatic spinal cord injury in rats[J]. Front Neurosci, 2022, 16: 800883. DOI: 10.3389/fnins.2022.800883.
62.Fang SY, Roan JN, Lee JS, et al. Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia[J]. J Thorac Cardiovasc Surg, 2021, 161(5): e337-e347. DOI: 10.1016/j.jtcvs.2019.10.151.
63.Fan Q, Cavus O, Xiong L, et al. Spinal cord injury: how could acupuncture help?[J]. J Acupunct Meridian Stud, 2018, 11(4): 124-132. DOI: 10.1016/j.jams.2018.05.002.
64.Dai N, Tang C, Liu H, et al. Effect of electroacupuncture on inhibition of inflammatory response and oxidative stress through activating ApoE and Nrf2 in a mouse model of spinal cord injury[J]. Brain Behav, 2021, 11(9): e2328. DOI: 10.1002/brb3.2328.
Popular Papers
-
A multicenter, open-label and phase Ⅳ clinical study on the treatment of urinary tract infections with Relinqing granules
Jul. 30, 20243014
-
Current situation and reform trend of medical practical course teaching mode in the "AI+Education" era
Aug. 31, 20242498
-
An analysis of disease burden and risk factors of chronic kidney disease in China from 1990 to 2021
Sep. 30, 20242400
-
Construction and clinical teaching application of virtual patient system: based on artificial intelligence LLM technology
Jul. 30, 20241861
-
Characteristics of lower limb surface electromyography in patients with knee osteoarthritis and progress in their exercise rehabilitation
Aug. 31, 20241852
-
Analysis of the disease burden of neonatal encephalopathy due to birth asphyxia and trauma in China from 1990 to 2019
Aug. 31, 20241736
-
Research progress on the role and treatment of CD24 in the tumor microenvironment
Aug. 31, 20241662
-
Risk factors and prediction model construction for malnutrition in long-term bedridden elderly patients
Aug. 31, 20241632