Welcome to visit Zhongnan Medical Journal Press Series journal website!

Research progress on the role and mechanism of oxidative stress in spinal cord injury

Published on Mar. 29, 2024Total Views: 2391 timesTotal Downloads: 2658 timesDownloadMobile

Author: MA Chunwei 1, 2 ZHANG Haihong 1, 2

Affiliation: 1. Department of Orthopedic, The Second Hospital of Lanzhou University, Lanzhou 730030, China 2. The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China

Keywords: Spinal cord injury Oxidative stress Signaling pathway Reactive oxygen

DOI: 10.12173/j.issn.1004-5511.202312102

Reference: Ma CW, Zhang HH. Research progress on the role and mechanism of oxidative stress in spinal cord injury[J]. Yixue Xinzhi Zazhi, 2024, 34(3): 339-346. DOI:10.12173/j.issn.1004-5511.202312102.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Spinal cord injury (SCI) is a disease that profoundly impacts the central nervous system, with oxidative stress playing a crucial role in its secondary damage. This article provides a comprehensive review of the role of oxidative stress in SCI, its primary signaling pathways, and current treatment methods. It focuses particularly on the functions of pathways such as Nrf-2, PI3K/AKT, and TLR4/MyD88 in the regulation of oxidative stress and explores the potential of antioxidant therapies in alleviating SCI symptoms. This paper aims to offer insights for a deeper understanding of SCI and provide reference for optimizing treatment strategies.

Full-text
Please download the PDF version to read the full text: download
References

1.Hu XC, Lu YB, Yang YN, et al. Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered?[J]. Neural Regen Res, 2021, 16(3): 405-413. DOI: 10.4103/1673-5374.293130.

2.Quadri SA, Farooqui M, Ikram A, et al. Recent update on basic mechanisms of spinal cord injury[J]. Neurosurg Rev, 2020, 43(2): 425-441. DOI: 10.1007/s10143-018-1008-3.

3.Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J]. Int J Mol Sci, 2020, 21(20): 7533. DOI: 10.3390/ijms21207533.

4.Fakhri S, Abbaszadeh F, Moradi SZ, et al. Effects of polyphenols on oxidative stress, inflammation, and interconnected pathways during spinal cord injury [J]. Oxid Med Cell Longev, 2022, 2022: 8100195. DOI: 10.1155/2022/8100195.

5.Baroncini A, Maffulli N, Eschweiler J, et al. Pharmacological management of secondary spinal cord injury[J]. Expert Opin Pharmacother, 2021, 22(13): 1793-1800. DOI: 10.1080/14656566.2021.1918674.

6.Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine[J]. Chem Rev, 2019, 119(8): 4881-4985. DOI: 10.1021/acs.chemrev.8b00626.

7.Fatima G, Sharma VP, Das SK, et al. Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease[J]. Spinal Cord, 2015, 53(1): 3-6. DOI: 10.1038/sc.2014.178.

8.Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms[J]. Front Neurol, 2019, 10: 282. DOI: 10.3389/fneur.2019.00282.

9.Brennan AM, Suh SW, Won SJ, et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation[J]. Nat Neurosci, 2009, 12(7): 857-863. DOI: 10.1038/nn.2334.

10.Demaurex N, Scorrano L. Reactive oxygen species are NOXious for neurons[J]. Nat Neurosci, 2009, 12(7): 819-820. DOI: 10.1038/nn0709-819.

11.Shi Z, Yuan S, Shi L, et al. Programmed cell death in spinal cord injury pathogenesis and therapy[J]. Cell Prolif, 2021, 54(3): e12992. DOI: 10.1111/cpr.12992.

12.Lin J, Xiong Z, Gu J, et al. Sirtuins: potential therapeutic targets for defense against oxidative stress in spinal cord injury[J]. Oxid Med Cell Longev, 2021, 2021: 7207692. DOI: 10.1155/2021/7207692.

13.Liu L, Zhou J, Wang Y, et al. Imatinib inhibits oxidative stress response in spinal cord injury rats by activating Nrf2/HO-1 signaling pathway[J]. Exp Ther Med, 2020, 19(1): 597-602. DOI: 10.3892/etm.2019.8270.

14.Rao S, Lin Y, Lin R, et al. Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment[J]. J Nanobiotechnology, 2022, 20(1): 278. DOI: 10.1186/s12951-022-01490-x.

15.Dong Y, Yong VW. Oxidized phospholipids as novel mediators of neurodegeneration[J]. Trends Neurosci, 2022, 45(6): 419-429. DOI: 10.1016/j.tins.2022.03.002.

16.Liu Z, Yao X, Jiang W, et al. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury[J]. J Neuroinflammation, 2020, 17(1): 90. DOI: 10.1186/s12974-020-01751-2.

17.Kim JW, Mahapatra C, Hong JY, et al. Functional recovery of contused spinal cord in rat with the injection of optimal-dosed cerium oxide nanoparticles[J]. Adv Sci (Weinh), 2017, 4(10): 1700034. DOI: 10.1002/advs.201700034.

18.Li D, Tian H, Li X, et al. Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells[J]. Life Sci, 2020, 245: 117351. DOI: 10.1016/j.lfs.2020.117351.

19.Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042.

20.Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379. DOI: 10.1038/cdd.2015.158.

21.Ge MH, Tian H, Mao L, et al. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway[J]. CNS Neurosci Ther, 2021, 27(9): 1023-1040. DOI: 10.1111/cns.13657.

22.Xia M, Zhang Q, Zhang Y, et al. Growth differentiation factor 15 regulates oxidative stress-dependent ferroptosis post spinal cord injury by stabilizing the p62-Keap1-Nrf2 signaling pathway[J]. Front Aging Neurosci, 2022, 14: 905115. DOI: 10.3389/fnagi.2022.905115.

23.Wakatsuki S, Takahashi Y, Shibata M, et al. Selective phosphorylation of serine 345 on p47-phox serves as a priming signal of ROS-mediated axonal degeneration[J]. Exp Neurol, 2022, 352: 114024. DOI: 10.1016/j.expneurol. 2022.114024.

24.Wang W, Huang X, Zhang Y, et al. Se@SiO2 nanocomposites suppress microglia-mediated reactive oxygen species during spinal cord injury in rats[J]. RSC Adv, 2018, 8(29): 16126-16138. DOI: 10.1039/c8ra01906a.

25.Zheng Q, Zhang J, Zuo X, et al. Photobiomodulation promotes neuronal axon regeneration after oxidative stress and induces a change in polarization from M1 to M2 in macrophages via stimulation of CCL2 in neurons: relevance to spinal cord injury[J]. J Mol Neurosci, 2021, 71(6): 1290-1300. DOI: 10.1007/s12031-020-01756-9.

26.Hervera A, De Virgiliis F, Palmisano I, et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons[J]. Nat Cell Biol, 2018, 20(3): 307-319. DOI: 10.1038/s41556-018-0039-x.

27.Shiao R, Lee-Kubli CA. Neuropathic pain after spinal cord injury: challenges and research perspectives[J]. Neurotherapeutics, 2018, 15(3): 635-653. DOI: 10.1007/s13311-018-0633-4.

28.Kallenborn-Gerhardt W, Schröder K, Schmidtko A. Nadph oxidases in pain processing[J]. Antioxidants (Basel), 2022, 11(6): 1162. DOI: 10.3390/antiox11061162.

29.Lee BH, Kang J, Kim HY, et al. The roles of superoxide on at-level spinal cord injury pain in rats[J]. Int J Mol Sci, 2021, 22(5): 2672. DOI: 10.3390/ijms22052672.

30.Baron-Flores V, Diaz-Ruiz A, Manzanares J, et al. Cannabidiol attenuates hypersensitivity and oxidative stress after traumatic spinal cord injury in rats[J]. Neurosci Lett, 2022, 788: 136855. DOI: 10.1016/j.neulet.2022.136855.

31.Zhao Y, Sun Y, Wang G, et al. Dendrobium officinale polysaccharides protect against MNNG-Induced PLGC in rats via activating the NRF2 and antioxidant enzymes HO-1 and NQO-1[J]. Oxid Med Cell Longev, 2019, 2019: 9310245. DOI: 10.1155/2019/9310245.

32.Li X, Zhan J, Hou Y, et al. Coenzyme Q10 regulation of apoptosis and oxidative stress in H2O2 induced BMSC death by modulating the Nrf-2/NQO-1 signaling pathway and its application in a model of spinal cord injury[J]. Oxid Med Cell Longev, 2019, 2019: 6493081.DOI: 10.1155/2019/6493081.

33.Xia P, Gao X, Duan L, et al. Mulberrin (Mul) reduces spinal cord injury (SCI)-induced apoptosis, inflammation and oxidative stress in rats via miroRNA-337 by targeting Nrf-2[J]. Biomed Pharmacother, 2018, 107: 1480-1487. DOI: 10.1016/j.biopha.2018.07.082.

34.Xiao CL, Yin WC, Zhong YC, et al. The role of PI3K/Akt signalling pathway in spinal cord injury[J]. Biomed Pharmacother, 2022, 156: 113881. DOI: 10.1016/j.biopha.2022.113881.

35.He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities[J]. Cell Prolif, 2022, 55(9): e13275. DOI: 10.1111/cpr.13275.

36.He X, Guo X, Ma Z, et al. Grape seed proanthocyanidins protect PC12 cells from hydrogen peroxide-induced damage via the PI3K/AKT signaling pathway[J]. Neurosci Lett, 2021, 750: 135793. DOI: 10.1016/j.neulet.2021.135793.

37.Li F, Song X, Xu J, et al. Morroniside protects OLN-93 cells against H2O2-induced injury through the PI3K/Akt pathway-mediated antioxidative stress and antiapoptotic activities[J]. Cell Cycle, 2021, 20(7): 661-675. DOI: 10.1080/15384101.2021.1889186.

38.Azam S, Jakaria M, Kim IS, et al. Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling[J]. Front Immunol, 2019, 10: 1000. DOI: 10.3389/fimmu.2019.01000.

39.米爽, 吴燕君, 洪正华, 等. TLR4/MyD88/NF-κB通路基因及相关炎症因子在继发性脊髓损伤患者中的表达[J]. 浙江大学学报(医学版), 2019, 48(6): 609-616. [Mi S, Wu YJ, Hong ZH, et al. Expression of TLR4/MyD88/NF-κB pathway genes and its related inflammatory factors in secondary spinal cord injury[J]. Journal of Zhejiang University (Medical Sciences), 2019, 48(6): 609-616.] DOI: 10.3785/j.issn.1008-9292.2019.12.04.

40.Li H, Wang Y, Hu X, et al. Thymosin beta 4 attenuates oxidative stress-induced injury of spinal cord-derived neural stem/progenitor cells through the TLR4/MyD88 pathway[J]. Gene, 2019, 707: 136-142. DOI: 10.1016/j.gene.2019.04.083.

41.Zhang SS, Liu M, Liu DN, et al. TLR4-IN-C34 Inhibits lipopolysaccharide-stimulated inflammatory responses via downregulating TLR4/MyD88/NF-κB/NLRP3 signaling pathway and reducing ROS generation in BV2 cells[J]. Inflammation, 2022, 45(2): 838-850. DOI: 10.1007/s10753-021-01588-8.

42.Zhou B, Lin W, Long Y, et al. Notch signaling pathway: architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 95. DOI: 10.1038/s41392-022-00934-y.

43.Zhang S, Botchway BOA, Zhang Y, et al. Resveratrol can inhibit notch signaling pathway to improve spinal cord injury[J]. Ann Anat, 2019, 223: 100-107. DOI: 10.1016/j.aanat.2019.01.015.

44.Li L, Lin G, Gu H, et al. Effects of Srxn1 on growth and Notch signalling of astrocyte induced by hydrogen peroxide[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 1917-1923. DOI: 10.1080/21691401.2019.1614016.

45.Lv Z, Yin S, Cheng Z, et al. Lenalidomide improves H2O2-induced PC12 cell injury by blocking the Notch signaling pathway[J]. Exp Ther Med, 2022, 23(6): 421. DOI: 10.3892/etm.2022.11348.

46.De Los Reyes Corrales T, Losada-Pérez M, Casas-Tintó S. JNK pathway in CNS pathologies[J]. Int J Mol Sci, 2021, 22(8): 3883. DOI: 10.3390/ijms22083883.

47.Khalid S, Drasche A, Thurner M, et al. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation[J]. Sci Rep, 2016, 6: 20930. DOI: 10.1038/srep20930.

48.Cheng M, Wu X, Wang F, et al. Electro-acupuncture inhibits p66Shc-mediated oxidative stress to facilitate functional recovery after spinal cord injury[J]. J Mol Neurosci, 2020, 70(12): 2031-2040. DOI: 10.1007/s12031-020-01609-5.

49.刘娟, 钟子安, 杨柳, 等. 迷迭香酸调控SIRT1/NF-κB通路对缺氧复氧神经元炎症及氧化应激损伤的影响[J]. 中国药师, 2022, 25(2): 227-231. [Liu J, Zhong ZA, Yang L, et al. Effects of rosmarinic acid on lnflammation and oxidative stress damage of hypoxiareoxygenation neurons by regulating SIRT1/NF-KB pathway[J]. China Pharmacist, 2022, 25(2): 227-231.] DOI: 10.19962/j.cnki.issn1008-049X.2022.02.005.

50.Ma Z, Lu Y, Yang F, et al. Rosmarinic acid exerts a neuroprotective effect on spinal cord injury by suppressing oxidative stress and inflammation via modulating the Nrf2/HO-1 and TLR4/NF-κB pathways[J]. Toxicol Appl Pharmacol, 2020, 397: 115014. DOI: 10.1016/j.taap.2020.115014.

51.Zhang L, Zhang W, Zheng B, et al. Sinomenine attenuates traumatic spinal cord injury by suppressing oxidative stress and inflammation via Nrf2 pathway[J]. Neurochem Res, 2019, 44(4): 763-775. DOI: 10.1007/s11064-018-02706-z.

52.Sun P, Liu DZ, Jickling GC, et al. MicroRNA-based therapeutics in central nervous system injuries[J]. J Cereb Blood Flow Metab, 2018, 38(7): 1125-1148. DOI: 10.1177/0271678x18773871.

53.Zhang ZZ, Xian SY, Bao C, et al. MicroRNA-299a-5p protects against spinal cord injury through activating AMPK pathway[J]. Oxid Med Cell Longev, 2022, 2022: 8659587. DOI: 10.1155/2022/8659587.

54.Guan C, Wang Y. LncRNA CASC9 attenuates lactate dehydrogenase-mediated oxidative stress and inflammation in spinal cord injury via sponging miR-383-5p[J]. Inflammation, 2021, 44(3): 923-933. DOI: 10.1007/s10753-020-01387-7.

55.Chen ZH, Wu SH. Protective effects of SIRT6 against inflammation, oxidative stress, and cell apoptosis in spinal cord injury[J]. Inflammation, 2020, 43(5): 1751-1758. DOI: 10.1007/s10753-020-01249-2.

56.Li Y, Yang L, Hu F, et al. Novel thermosensitive hydrogel promotes spinal cord repair by regulating mitochondrial function[J]. ACS Appl Mater Interfaces, 2022, 14(22): 25155-25172. DOI: 10.1021/acsami.2c04341.

57.Rao S, Lin Y, Du Y, et al. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction[J]. J Mater Chem B, 2019, 7(16): 2648-2656. DOI: 10.1039/c8tb02520g.

58.Zhang J, Li Y, Xiong J, et al. Delivery of pOXR1 through an injectable liposomal nanoparticle enhances spinal cord injury regeneration by alleviating oxidative stress[J]. Bioact Mater, 2021, 6(10): 3177-3191. DOI: 10.1016/j.bioactmat.2021.03.001.

59.Zhang A, Bai Z, Yi W, et al. Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats[J]. Neurosci Lett, 2021, 761: 136124. DOI: 10.1016/j.neulet.2021.136124.

60.Gollihue JL, Patel SP, Rabchevsky AG. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma[J]. Neural Regen Res, 2018, 13(2): 194-197. DOI: 10.4103/1673-5374.226382.

61.Lin MW, Fang SY, Hsu JC, et al. Mitochondrial transplantation attenuates neural damage and improves locomotor function after traumatic spinal cord injury in rats[J]. Front Neurosci, 2022, 16: 800883. DOI: 10.3389/fnins.2022.800883.

62.Fang SY, Roan JN, Lee JS, et al. Transplantation of viable mitochondria attenuates neurologic injury after spinal cord ischemia[J]. J Thorac Cardiovasc Surg, 2021, 161(5): e337-e347. DOI: 10.1016/j.jtcvs.2019.10.151.

63.Fan Q, Cavus O, Xiong L, et al. Spinal cord injury: how could acupuncture help?[J]. J Acupunct Meridian Stud, 2018, 11(4): 124-132. DOI: 10.1016/j.jams.2018.05.002.

64.Dai N, Tang C, Liu H, et al. Effect of electroacupuncture on inhibition of inflammatory response and oxidative stress through activating ApoE and Nrf2 in a mouse model of spinal cord injury[J]. Brain Behav, 2021, 11(9): e2328. DOI: 10.1002/brb3.2328.