Welcome to visit Zhongnan Medical Journal Press Series journal website!

Correlation study of neutrophils in knee osteoarthritis

Published on Mar. 29, 2024Total Views: 1183 timesTotal Downloads: 598 timesDownloadMobile

Author: LIU Xin 1 GUO Jiajun 1 MA Hong'e 1 ZHANG Wenxian 2

Affiliation: 1. Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China 2. Department of Geriatric Orthopedics, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, China

Keywords: Knee osteoarthritis Neutrophils MicroRNAs Exosomes Treatment

DOI: 10.12173/j.issn.1004-5511.202310057

Reference: Liu X, Guo JJ, Ma HE, Zhang XW. Correlation study of neutrophils in knee osteoarthritis[J]. Yixue Xinzhi Zazhi, 2024, 34(3): 347-354. DOI: 10.12173/j.issn.1004-5511.202310057.[Article in Chinese]

  • Abstract
  • Full-text
  • References
Abstract

Knee osteoarthritis (KOA), as a chronic disability disease that seriously damages the quality of life, will degrade articular cartilage and lead to subchondral bone remodeling, resulting in knee pain, stiffness and limited function. It is one of the most common bone and joint diseases. As an inflammatory disease, the etiology of KOA involves both repair and degradation mechanisms. Neutrophils, as powerful natural immune effector cells that can precisely regulate the function of blood and tissue. It is the first immune cells to enter the synovial membrane after joint injury and is an important factor in joint inflammation and cartilage destruction, and its activity is necessary for the progression of KOA. This article focus on KOA influencing factors, its relationship with neutrophils and macrophages, and the pathological mechanisms of KOA, so as to providing reference for KOA treatment.

Full-text
Please download the PDF version to read the full text: download
References

1.Magnusson K, Turkiewicz A, Snoeker B, et al. The heritability of doctor-diagnosed traumatic and degenerative meniscus tears[J]. Osteoarthritis Cartilage, 2021, 29(7): 979-985. DOI: 10.1016/j.joca.2021.03.005.

2.Katano H, Ozeki N, Kohno Y, et al. Trends in arthroplasty in Japan by a complete survey, 2014-2017[J]. J Orthop Sci, 2021, 26(5): 812-822. DOI: 10.1016/j.jos.2020.07.022.

3.Jang S, Lee K, Ju JH. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee[J]. Int J Mol Sci, 2021, 22(5): 2619. DOI: 10.3390/ijms22052619.

4.Latourte A, Kloppenburg M, Richette P. Emerging pharmaceutical therapies for osteoarthritis[J]. Nat Rev Rheumatol, 2020, 16(12): 673-688. DOI: 10.1038/s41584-020-00518-6.

5.Hsueh MF, Zhang X, Wellman SS, et al. Synergistic roles of macrophages and neutrophils in osteoarthritis progression[J]. Arthritis Rheumatol, 2021, 73(1): 89-99. DOI: 10.1002/art.41486.

6.Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311. DOI: 10.1016/j.mcna.2019.10.007.

7.Sacitharan PK. Ageing and osteoarthritis[J]. Subcell Biochem, 2019: 123-159. DOI: 10.1007/978-981-13-3681-2_6.

8.Ren Y, Hu J, Tan J, et al. Incidence and risk factors of symptomatic knee osteoarthritis among the Chinese population: analysis from a nationwide longitudinal study[J]. BMC Public Health, 2020, 20(1): 1491. DOI: 10.1186/s12889-020-09611-7.

9.O'Neill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis[J]. Best Pract Res Clin Rheumatol, 2018, 32(2): 312-326. DOI: 10.1016/j.berh.2018.10.007.

10.Nguyen US, Zhang Y, Zhu Y, et al. Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data[J]. Ann Intern Med, 2011, 155(11): 725-732. DOI: 10.7326/0003-4819-155-11-201112060-00004.

11.Dennison EM. Osteoarthritis: the importance of hormonal status in midlife women[J]. Maturitas, 2022, 165: 8-11. DOI: 10.1016/j.maturitas.2022.07.002.

12.Nguyen U, Saunders F, Martin K. Sex difference in OA: should we blame estrogen?[J]. Eur J Rheumatol, 2023. DOI: 10.5152/eurjrheum.2023.20193.

13.Pereira D, Severo M, Ramos E, et al. Potential role of age, sex, body mass index and pain to identify patients with knee osteoarthritis[J]. Int J Rheum Dis, 2017, 20(2): 190-198. DOI: 10.1111/1756-185X.12611.

14.Wang Y, Meng F, Wu J, et al. Associations between adipokines gene polymorphisms and knee osteoarthritis: a Meta-analysis[J]. BMC Musculoskeletal Disorders, 2022, 23(1): 166. DOI: 10.1186/s12891-022-05111-4.

15.Song HS, Kim DH, Lee GC, et al. Work-related factors of knee osteoarthritis in Korean farmers: a cross-sectional study[J]. Ann Occup Environ Med, 2020, 32: e37. DOI: 10.35371/aoem.2020.32.e37.

16.Madaleno FO, Santos BA, Araújo VL, et al. Prevalence of knee osteoarthritis in former athletes: a systematic review with Meta-analysis[J]. Braz J Phys Ther, 2018, 22(6): 437-451. DOI: 10.1016/j.bjpt.2018.03.012.

17.Cameron KL, Driban JB, Svoboda SJ. Osteoarthritis and the tactical athlete: a systematic review[J]. J Athl Train, 2016, 51(11): 952-961. DOI: 10.4085/1062-6050-51.5.03.

18.Kaneva MK. Neutrophil elastase and its inhibitors-overlooked players in osteoarthritis[J]. The FEBS Journal, 2022, 289(1): 113-116. DOI: 10.1111/febs.16194.

19.Wilkinson DJ, Falconer AMD, Wright HL, et al. Matrix metalloproteinase-13 is fully activated by neutrophil elastase and inactivates its serpin inhibitor, alpha-1 antitrypsin: implications for osteoarthritis[J]. FEBS J, 2022, 289(1): 121-139. DOI: 10.1111/febs.16127.

20.Büyükavcı R, Aktürk S, Sağ S. Comparison of blood platelet distribution width and neutrophil-lymphocyte ratio in patients with different grades of knee osteoarthritis[J]. J Back Musculoskelet Rehabil, 2018, 31(6): 1035-1039. DOI: 10.3233/BMR-171028.

21.Luz-Crawford P, Jorgensen C, Djouad F. Mesenchymal stem cells direct the immunological fate of macrophages[J]. Results Probl Cell Differ, 2017: 61-72. DOI: 10.1007/978-3-319-54090-0_4.

22.Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression[J]. Int J Mol Sci, 2020, 21(7): 2358. DOI: 10.3390/ijms21072358.

23.Singh P, Marcu KB, Goldring MB, et al. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy[J]. Ann NY Acad Sci, 2019, 1442(1): 17-34. DOI: 10.1111/nyas.13930.

24.Chen S, Tao J, Bae Y, et al. Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9[J]. J Bone Miner Res, 2013, 28(3): 649-659. DOI: 10.1002/jbmr.1770.

25.Szilagyi IA, Waarsing JH, Schiphof D, et al. Towards sex-specific osteoarthritis risk models: evaluation of risk factors for knee osteoarthritis in males and females[J]. Rheumatology (Oxford), 2022, 61(2): 648-657. DOI: 10.1093/rheumatology/keab378.

26.Kohn A, Rutkowski TP, Liu Z, et al. Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9[J]. Bone Res, 2015, 3(1): 15021. DOI: 10.1038/boneres.2015.21.

27.Feng W, Guo J, Li M. RANKL-independent modulation of osteoclastogenesis[J]. J Oral Biosci, 2019, 61(1): 16-21. DOI: 10.1016/j.job.2019.01.001.

28.Kaneva MK. Neutrophil elastase and its inhibitors-overlooked players in osteoarthritis[J]. FEBS J, 2022, 289(1): 113-116. DOI: 10.1111/febs.16194.

29.Kaneva MK, Muley MM, Krustev E, et al. Alpha-1-antitrypsin reduces inflammation and exerts chondroprotection in arthritis[J]. FASEB J, 2021, 35(5): e21472. DOI: 10.1096/fj.202001801R.

30.Wang G, Jing W, Bi Y, et al. Neutrophil elastase induces chondrocyte apoptosis and facilitates the occurrence of osteoarthritis via caspase signaling pathway[J].Front Pharmacol, 2021, 12: 666162. DOI: 10.3389/fphar. 2021.666162.

31.Weber A, Chan PMB, Wen C. Do immune cells lead the way in subchondral bone disturbance in osteoarthritis?[J]. Prog Biophys Mol Biol, 2019, 148: 21-31. DOI: 10.1016/j.pbiomolbio.2017.12.004.

32.Hsueh MF, Zhang X, Wellman SS, et al. Synergistic roles of macrophages and neutrophils in osteoarthritis progression[J]. Arthritis Rheumatol, 2021, 73(1): 89-99. DOI: 10.1002/art.41486.

33.Leung YY, Haaland B, Huebner JL, et al. Colchicine lack of effectiveness in symptom and inflammation modification in knee osteoarthritis (COLKOA): a randomized controlled trial[J]. Osteoarthritis Cartilage, 2018, 26(5): 631-640. DOI: 10.1016/j.joca.2018.01.026.

34.Chang MC, Chiang PF, Kuo YJ, et al. Hyaluronan-loaded liposomal dexamethasone-diclofenac nanoparticles for local osteoarthritis treatment[J]. Int J Mol Sci, 2021, 22(2): 665. DOI: 10.3390/ijms22020665.

35.Tamassia N, Bianchetto-Aguilera F, Arruda-Silva F, et al. Cytokine production by human neutrophils: revisiting the "dark side of the moon"[J]. Eur J Clin Invest, 2018, 48: e12952. DOI: 10.1111/eci.12952.

36.Donell S. Subchondral bone remodelling in osteoarthritis[J]. EFORT Open Rev, 2019, 4(6): 221-229. DOI: 10.1302/2058-5241.4.180102.

37.Molnar V, Matišić V, Kodvanj I, et al. Cytokines and chemokines involved in osteoarthritis pathogenesis[J]. Int J Mol Sci, 2021, 22(17): 9208. DOI: 10.3390/ijms22179208.

38.Pourakbari R, Khodadadi M, Aghebati-Maleki A, et al. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis[J]. Life Sci, 2019, 236: 116861. DOI: 10.1016/j.lfs.2019. 116861.

39.Mao G, Zhang Z, Hu S, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A[J]. Stem Cell Res Ther, 2018, 9(1): 247. DOI: 10.1186/s13287-018-1004-0.

40.Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: properties and clinical application[J]. Stem Cells Int, 2018, 2018: 3057624. DOI: 10.1155/2018/ 3057624.

41.Ni Z, Zhou S, Li S, et al. Exosomes: roles and therapeutic potential in osteoarthritis[J]. Bone Res, 2020, 8(1): 25. DOI: 10.1038/s41413-020-0100-9.

42.Zhan D, Cross A, Wright HL, et al. Internalization of neutrophil-derived microvesicles modulates TNFα-stimulated proinflammatory cytokine production in human fibroblast-like synoviocytes[J]. Int J Mol Sci, 2021, 22(14): 7409. DOI: 10.3390/ijms22147409.

43.Ju C, Liu R, Zhang Y, et al. Exosomes may be the potential new direction of research in osteoarthritis management[J]. Biomed Res Int, 2019, 2019: 7695768. DOI: 10.1155/2019/7695768.

44.Li Z, Cheng J, Liu J. Baicalin protects human OA chondrocytes against IL-1β-induced apoptosis and ECM degradation by activating autophagy via MiR-766-3p/AIFM1 axis[J]. Drug Des Devel Ther, 2020: 2645-2655. DOI: 10.2147/DDDT.S255823.

45.Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review[J]. JAMA, 2021, 325(6): 568-578. DOI: 10.1001/jama.2020.22171.

46.王亮,陈祁青,童培建,等. 膝骨性关节炎早期诊断的研究进展[J]. 中国骨伤, 2016, 29(3): 288-291. [Wang L, Chen QQ, Tong PJ, et al. Progress on the early diagnosis of knee osteoarthritis[J]. China Journal of Orthopaedics and Traumatology, 2016, 29(3): 288-291.]DOI: 10.3969/j.issn.1003-0034.2016.03.020.

47.Michael JW, Schlüter-Brust KU, Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee[J]. Dtsch Arztebl Int, 2010, 107(9): 152-162. DOI: 10.3238/arztebl. 2010.0152.

48.Ernst E. Complementary or alternative therapies for osteoarthritis[J]. Nat Clin Pract Rheumatol, 2006, 2(2): 74-80. DOI: 10.1038/ncprheum0093.

49.Cameron M, Chrubasik S. Oral herbal therapies for treating osteoarthritis[J]. Cochrane Database Syst Rev, 2014 (5): CD00247. DOI: 10.1002/14651858.CD002947.pub2.

50.Naqvi SFA, Khaliq SA, Raza ML, et al. A comparative study of the common complaints and secondary complications in patients of osteoarthritis on allopathic, homeopathic and herbal system of medicines[J]. Pak J Pharm Sci, 2021, 34(1(Special)): 457-463. https://pubmed.ncbi.nlm.nih.gov/34275794/.

51.Skou ST, Roos EM. Physical therapy for patients with knee and hip osteoarthritis: supervised, active treatment is current best practice[J]. Clin Exp Rheumatol, 2019, 37(5): 112-117. https://pubmed.ncbi.nlm.nih.gov/31621559/.

52.Meng Z, Liu J, Zhou N. Efficacy and safety of the combination of glucosamine and chondroitin for knee osteoarthritis: a systematic review and Meta-analysis[J]. Arch Orthop Trauma Surg, 2023, 143(1): 409-421. DOI: 10.1007/s00402-021-04326-9.

53.胡元一,张启栋. 糖皮质激素在骨关节炎中的研究进展[J].中国矫形外科杂志, 2020, 28(19): 1779-1782. [Hu YY, Zhang QD. Research progress on glucocorticoids used in osteoarthritis[J]. Orthopedic Journal of China, 2020, 28(19): 1779-1782.] DOI: 10.3977/j.issn.1005-8478.2020.19.12.

54.Muto T, Kokubu T, Mifune Y, et al. Effects of platelet-rich plasma and triamcinolone acetonide on interleukin-1ß-stimulated human rotator cuff-derived cells[J]. Bone & Joint Research, 2016, 5(12): 602-609. DOI: 10.1302/2046-3758.512.2000582.

55.Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology[J]. Biorheology, 2002, 39(1-2): 237-246. https://pubmed.ncbi.nlm.nih.gov/12082286/.

56.McColl SR, Paquin R, Menard C, et al. Human neutrophils produce high levels of the interleukin 1 receptor antagonist in response to granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha[J]. J Exp Med, 1992, 176(2): 593-598. DOI: 10.1084/jem.176.2.593.

57.Darabos N, Haspl M, Moser C, et al. Intraarticular application of autologous conditioned serum (ACS) reduces bone tunnel widening after ACL reconstructive surgery in a randomized controlled trial[J]. Knee Surg Sports Traumatol Arthrosc, 2011, 19(suppl 1): 36-46. DOI: 10.1007/s00167-011-1458-4.

58.Chevalier X, Giraudeau B, Conrozier T, et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study[J]. J Rheumatol, 2005, 32(7): 1317-1323. https://pubmed.ncbi.nlm.nih.gov/15996071/.

59.Conaghan PG, Cook AD, Hamilton JA, et al. Therapeutic options for targeting inflammatory osteoarthritis pain[J]. Nat Rev Rheumatol, 2019, 15(6): 355-363. DOI: 10.1038/s41584-019-0221-y.

60.Vincent TL. IL-1 in osteoarthritis: time for a critical review of the literature[J]. F1000Res, 2019, 8(F1000 Faculty Rev: 934). DOI: 10.12688/f1000research.18831.1.

61.Vesela B, Zapletalova M, Svandova E, et al. General caspase inhibition in primary chondrogenic cultures impacts their transcription profile including osteoarthritis-related factors[J]. Cartilage, 2021, 13(2_suppl): 1144S-1154S. DOI: 10.1177/19476035211044823.